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A B S T R A C T 

In the present paper, a one-dimensional finite element model for the analysis of composite 

beams of partial interaction is constructed. This model was verified against some analytical 

results available in the literature and achieved very good agreement with the natural 

frequencies and the time histories it was compared to. Then it was utilised to analyse partial 

interaction composite beams under the effect of uniform step loads and provided important 

information about the expected dynamic amplification factors, which turned out to be 

particularly high, and the effects of the linear stiffness ratio of the interface and the boundary 

conditions of the lower layer of the beam. The results, in particular, showed that even for 

extreme cases the orders of magnitude of the slip and the corresponding uplift remain the same. 

This pointed out an important finding that the uplift in the researched context, at least, is not 

negligible as it is widely assumed in the literature. 

 

DOI: 10.37650/ijce.2022.160206 

1. Introduction  

The structural performance of composite beams of partial interaction has been in the research interest in 

structural engineering since the pioneering work of Newmark (1951) in the 1950s in which he pointed out essential 

theoretical and experimental aspects of the subject in the static loading realm. Later on, many researchers 

expanded on that pioneering work and bifurcated it into several trends, some of which are analytical, some are 

numerical and the others are completely experimental (Plum and Horne, 1975; Hirst and Yeo, 1980; Oven et al., 

1997; Taig and Ranzi, 2015; Turmo et al., 2015; Liu et al., 2016; Nguyen and Hjiaj, 2016; Bedon and Fragiacomo, 

2019; Wang et al., 2020; Martinelli, 2021; Sun et al., 2022).  

The appearance of works in the literature that dealt with the dynamics of composite beams of partial interaction 

came much later. One pioneering work of those is that of Girhammar and Pan (1993) who extended the usual 

separation of variables analysis to the governing equation of the vibrations of a composite beam of partial 

interaction. They presumed that the only flexibility of the interface is the shear (or the tangential) one, neglecting 

any effects of the uplift (or the transverse) flexibility of the interface. This particular trend of neglecting the effects 

of uplift was, seemingly, inherited from the mainstream research dealing with the static of those composite beams. 

mailto:sha19e1002@uoanbar.edu.iq
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It persisted for most parts of the two compartments of the relevant literature; the static and the dynamic ones. This 

neglect seems to depend on no reliable experimental or heuristic basis, however. On the contrary, inspecting the 

dominant form of constructing an interface in civil engineering practice reveals that the two flexibilities should 

be of the same order of magnitude. This is the case since those flexibilities are usually derived from the tensile 

and the shear strains of the same number of connectors which are of the same order of magnitude. Furthermore, 

experimental evidence exists that the transverse flexibility could be as low as half of the shear counterpart 

(Balakrishnan, 1963). This is in direct contradiction with the prevailing assumption of neglecting the effect of 

transverse flexibility since that requires the presumption that this particular flexibility is infinite, or practically 

infinite, at least. One notable exception to this trend is that of Adekola (1968) who presented a force-based 

extension of Newmark’s original theory that took uplift into account and delineated its importance and true order 

of magnitude in some static loading conditions.   

The application of the finite element model constructed in the present work to the particular problem of a 

uniform step loading of those composite beams revealed the large extent to which the usual assumption of 

negligibility of the uplift might be erroneous. 

 

2. The Finite Element Model 

In the present section, a one-dimensional finite element model is constructed to simulate the action of 

composite beams with partial interaction. Then, the use of this model is going to demonstrate that such a one-

dimensional representation composed of only two types of linear elements is capable of reproducing the 

corresponding results previously obtained for the vibrations, uplift, and internal actions of composite beams of 

partial interaction. In particular, detailed conclusions are made about the performance of such composite beams 

under uniform step loads. 

To simulate the material and the mechanical properties of a two-layer partial interaction composite beam, two 

types of finite elements are needed. The first, of course, is some choice of beam elements. The choice would 

certainly be affected by the particular implementation of the present FEM model. In this work, the model was 

implemented on ANSYS and it was found appropriate to use BEAM188 for the beam elements and COMBIN14 

for the spring elements.  Both elements are endowed by the programmers of ANSYS with much more capabilities 

than those immediately needed for the present work. Those extra capabilities were turned off and the remaining 

representations were linearly elastic springs in the two directions with no added damping or masses and simple 

beam elements that are capable of Timoshenko beam properties for short beams only while behaving practically 

like Euler-Bernoulli beams for slenderer beams. 

Irrespective of boundary conditions, the composite beam is to be discretised into two distinct layers of the 

beam element of choice on top of each other in a node-by-node format as shown in Fig. 1 below. Those two layers 

are meant to simulate the beam action introduced by the two layers of the composite beam. At each layer, a 

different modulus of elasticity and different geometrical properties of area and moment of inertia are assigned in 

the FEM software of choice to characterise that layer completely. Those two layers of beam elements are situated 

exactly at the centroidal axes of those layers and as such would be separated vertically by the eccentricity 

characterising the composite beam. In the practice of implementing this model on ANSYS, it was found that 

building the eccentricity into the ANSYS representation is problematic. A workaround, however, was to introduce 

it later in the section data. 

 

 

 

 

 

 

 

Fig. 1 A one-dimensional finite element model of a partial interaction composite beam 
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a 
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The interface between those two layers of beam elements is represented by two sets of linear springs, a set of 

horizontal and another of vertical springs. The horizontal springs are meant to represent horizontal or shear 

stiffness of the interface, while the vertical springs are meant to represent the transverse counterpart. All springs 

are to be attached at the nodes of the beam elements and the value of each spring is given by 

𝑘ℎ =
𝐾𝑠𝐿

𝑛 + 1
 (1) 

𝑘𝑣 =
𝐾𝑛𝐿

𝑛 + 1
 (2) 

where kh and kv are the values of each horizontal and vertical linear spring, respectively. The symbols Ks, and Kn 

stand for the linear shear and transverse stiffness values of the interface, respectively; while L stands for the length 

of the beam and n stands for the number of beam elements used to discretise each layer.  

In order to show the validity and robustness of the FEM model presented herein, verification against the results 

of Shen et al. (2011) is conducted.  

Shen et al.’s (2011) example used in the present work for verification purposes consists of a four metre T-

composite beam as illustrated in Fig. 2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Shen et al.’s (2011) example 

The linear masses of the example are ma = 36 kg/m and mb = 3.75 kg/m, while the moments of inertia are Ia = 

3.125×10-6 m4 and Ib = 14.0625×10-6 m4. The moduli of elasticity of the two layers were Ea = 12×109 N/m2 and Eb 

P(x,t) 

Ea, Aa, Ia, ma 

x, u Shear Connector 

𝐿 = 4 

Eb, Ab, Ib, mb 

z,w 

ba=0.300 

Centroid of Layer a 

ha=0.025 

hb=0.075 

Centroid of Layer b 

Dimensions are in metres 
bb=0.050 

da=0.050 

db=0.150 
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= 8×109 N/m2. The shear modulus Ks of the interface was taken to be 50 MN/m. In Shen et al.’s (2011) work, the 

transverse modulus was not taken into account, setting the curvatures and the deflections of the two layers of the 

beam equal everywhere.  

In linear analysis, it is always possible, at least in an implicit manner to express the response of a physical 

system as a sum of products each of which is a single variable function of the independent variables of the problem.  

More specifically, if u(x,t) is the response of a system, say u is a displacement of a vibrating beam, for instance, 

then there is an infinite set of real-valued functions {𝜙𝑖(𝑥)} and another set {𝜓𝑖(𝑡)} for i=1,2,3,… such that 

𝑢(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥)𝜓𝑖(𝑡)

∞

𝑖=1

 (3) 

Equation 3 may reduce to a finite sum in particular cases. Together with the linearity of the governing equation, 

equation 3 could be exploited to construct an efficient solution of the problem at hand.  

In the jargon of the theory of vibration of mechanical systems, 𝜙𝑖(𝑥) are known as mode shapes, while |𝜓𝑖(𝑡)| 
are known as the natural frequencies of the system. 

A quality of those mode shapes known as the orthogonality of mode shapes could be used to further increase 

the efficiency of the constructed solution. The orthogonality property of the mode shapes is expressed by 

∫ 𝜙𝑘(𝑥)𝜙𝑚(𝑥)

𝐿

0

= 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≠ 𝑚 (4) 

Although the current FEM model of composite beams with partial interaction does not express the physics of 

the problem directly in terms of a set of governing equations, it certainly is underlain by such a set.  At any rate, 

the FEM model or the underlying governing set of differential equations should relate ua(x,t), ub(x,t), wa(x,t), and 

wb(x,t) as a set of dependant field variables to the independent spatial, x, and the temporal variable, t.  Where 

ua(x,t), and ub(x,t) are the axial displacements along the centroids of the layers a and b, respectively, while wa(x,t), 

and wb(x,t) are the corresponding transverse counterparts.  

The mode superposition method for the constructed FEM model would rely on the plausible constructability 

of suitable compositions similar to 3.  In particular, the existence and the numerical reliability of the sets of 

functions {𝜙𝑢𝑎𝑖
(𝑥)}, {𝜙𝑢𝑏𝑖

(𝑥)}, {𝜙𝑤𝑎𝑖
(𝑥)}, {𝜙𝑤𝑏𝑖

(𝑥)}, {𝜓𝑢𝑎𝑖
(𝑡)}, {𝜓𝑢𝑏𝑖

(𝑡)}, {𝜓𝑤𝑎𝑖
(𝑡)}, {𝜓𝑤𝑏𝑖

(𝑡)} such that the 

following compositions apply, could be presumed 

𝑢𝑎(𝑥, 𝑡) = ∑ 𝜙𝑢𝑎𝑖
(𝑥)𝜓𝑢𝑎𝑖

(𝑡)

∞

𝑖=1

 (5) 

𝑢𝑏(𝑥, 𝑡) = ∑ 𝜙𝑢𝑏𝑖
(𝑥)𝜓𝑢𝑏𝑖

(𝑡)

∞

𝑖=1

 (6) 

𝑤𝑎(𝑥, 𝑡) = ∑ 𝜙𝑤𝑎𝑖
(𝑥)𝜓𝑤𝑎𝑖

(𝑡)

∞

𝑖=1

 (7) 

𝑤𝑏(𝑥, 𝑡) = ∑ 𝜙𝑤𝑏𝑖
(𝑥)𝜓𝑤𝑏𝑖

(𝑡)

∞

𝑖=1

 (8) 

However, Equations 5-8, above, are only directly usable when there exists a governing system of differential 

equations that is explicitly separable. In numerical work, like in the FEM, only combinations of the pure modes 

are calculable. 

For validation purposes, a comparison of the natural frequencies of the modes as computed by the present FEM 

analysis and that of Shen et al. (2011) revealed good agreement as is shown in Table 1 below. 

Using the so-called “state-space” method, Shen et al. (2011), also, solved the example appearing in Fig. 2 for the 

effects of a 1 N load moving across the beam at a constant speed of 10 m/sec. Here, histories of ua(x,t), ub(x,t), 

wa(x,t) and wb(x,t) are produced in Figs. 3 a-e for the time interval [0,0.4] sec, near the roller and at the mid-span 

for the purpose of comparing the present results to the those of Shen et al. (2011). Only wa(x,t) and wb(x,t) are 

actually of direct utility for the comparison since they are the only ones comparable to w(x,t) that was computed 

by Shen et al. (2011). In fact, according to their assumptions wa(x,t) = wb(x,t)= w(x,t) for all x and t. 
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Table 1- Comparison of the natural frequencies of Shen et al.’s (2011) example as given by their analysis 

and the present one 

Shen et al. 

(2011) mode 

order 

Frequency 

(rad/sec) 
Frequency (Hz) 

Current work  

mode order 
Frequency (Hz) 

Corresponding 

Shape 

Discrepancy 

(%) 

1 64.85 10.3212 1 10.187 1 1.30 

2 210.65 33.52599 2 32.676 2 2.54 

3 417.72 66.4822 3 63.577 3 4.37 

4 692.22 110.1702 4 89.911 Spring Mode × 

5 1038.44 165.2729 5 100.95 4 8.37 

6 1458.39 232.11 6 139.98 5 15.30 

 

  
Fig. 3 a The variation of ua(t) near the roller support of Shen 

et al.’s (2011) example corresponding to a 1 Newton force 

crossing the beam at 10 m/sec as computed by the present 

model 

Fig. 3 b The variation of ub(t) near the roller support of 

Shen et al.’s (2011) example corresponding to a 1 Newton 

force crossing the beam at 10 m/sec as computed by the 

present model 

  
Fig. 3 c The mid-span wa(t) of Shen et al.’s (2011) example 

corresponding to a 1 Newton force crossing the beam at 10 

m/sec as computed by the present model 

Fig. 3 d The mid-span wb(t) of Shen et al.’s (2011) example 

corresponding to a 1 Newton force crossing the beam at 10 

m/sec as computed by the present model 

 

Figure 3 e below, on the other hand, give the definitive comparison of the results of the present work and those 

of Shen et al. (2011), for time histories. Finite element convergence of the present model was obtained with 80 

beam elements and the corresponding spring elements. The spring elements of the model summed up to Ks = 50 

MN/m, the value that has been presumed by Shen et al. (2011) for their K. An equal value of Kn was presumed 

here, although experimentally the real value could be as half as that (Balakrishnan, 1963). 
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Fig. 3 e Comparison of mid-span deflection w(t) of Shen et al.’s (2011) example to wa(t) and wb(t) given by 

the present model corresponding to a 1 Newton force crossing the beam at 10 m/sec 

 

Fig. 3 f Comparison of transverse deflection w(x) of Shen et al.’s (2011) example to wa(x) and wb(x) given 

by the present model corresponding to a 1 Newton force crossing the beam at 10 m/sec, exactly at 0.12 

seconds 

It could be noted, above, that the present model could reproduce the corresponding analytical result to a very 

good degree of agreement. The discrepancy is attributable to the effect of Kn that has been neglected altogether 

along with the corresponding effect of uplift in Shen et al.’s (2011) analysis, and indeed in most of the similar 

dynamic analyses. Both wa(t) and wb(t) actually appear in Figs. 3 e and 3 f above, but they are very close since the 

uplift is, usually, very small at mid-span. 

The displacement fields of the slip and the uplift are as easily calculable using the present model and appear in 

Figs. 3 g and 3 h below for the same scenario. The absence of symmetry in the last two figures just reflects the 

absence of symmetry of the loading condition captured at the time value of 0.12 secs. Both slip and uplift 

distributions in this example reflect displacement fields of the same order of magnitude generally, furthermore, 

uplift, as usual, is much larger at the ends of this one-span beam, deepening the justification for questioning the 

neglect of uplift in most studies on the dynamics of composite beams or even the static ones. 
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Fig. 3 g The slip field of Shen et al.’s (2011) example corresponding to a 1 Newton force crossing the beam 

at 10 m/sec at time 0.12 sec, as given by the present model 
 

 

Fig. 3 h The uplift field of Shen et al.’s (2011) example corresponding to a 1 Newton force crossing the 

beam at 10 m/sec at time 0.12 sec, as given by the present model 

3. Uniform Step Load 

A uniform step load is a uniformly distributed load that is, suddenly, applied to the entire span of the beam and 

kept thereafter. In a sense, it gives the intuition of a more pressing agent than that of the corresponding uniform 

impulsive load, since it remains applied after the sudden instant of time at which it is applied to the structure. In 

this section, the numerical experiments of applying a 1 kN uniform step load to the beam section of Fig. 2 

corresponding to different beam lengths and other parameters are reported. The more pressing nature of the step 

load is mostly obvious through extraordinarily large amplification factors. 
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Fig. 4 a Dynamic mid-span transverse deflections of the numerical simply supported beam of 5 m length 

due to a uniform step 1 kN load, for a period of 2 seconds 

 

Fig. 4 b Dynamic mid-span wb(t) of the numerical simply supported beam of 5 m length due to a uniform 

step 1 kN load, for a period of 2 seconds 

 

  

(c) wa(t) at mid span (d) ua(t) near the roller 
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(e) ub(t) near the roller (f) Transverse deflections at 0.1 seconds 

  

(g) Slip at 0.1 seconds (h) Uplift at 0.1 seconds 

Fig. 4 c-h Dynamic responses of the numerical simply supported beam of 5 m length due to a uniform step 

1 kN load 

 

Already at 5 m, the effect of uplift is significant as is seen in Figs. 4 f, g and h. Comparing the g and h parts, in 

particular, shows that the uplift could be an order of magnitude larger than the slip, even at this relatively short 

length of the beam. Fig. 4 a, however, does not show that obviously because of the large dynamic amplification 

factor which is about 17.5 in this case.   

A couple, more, numerical beams are analysed here to study the effects of varying the linear transverse 

modulus, Kn, under uniform step loading. The length of each of those two beams is 6 m. 

 

Fig. 5 a Dynamic mid-span transverse deflections of the numerical simply supported beam of 6 m length 

with Kn = 1010 N/m and Ks = 108 N/m due to a uniform step 1 kN load, for a period of 2 seconds 
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Fig. 5 b Dynamic mid-span wb(t) of the numerical simply supported beam of 6 m length with Kn = 1010 N/m 

and Ks = 108 N/m due to a uniform step 1 kN load, for a period of 2 seconds 
 

 

 

(c) wa(t) at mid span (d) ua(t) near the roller 

 
 

(e) ub(t) near the roller (f) Transverse deflections at 0.1 seconds 

 

 

(g) Slip at 0.1 seconds (h) Uplift at 0.1 seconds 

Fig. 5 c-h Dynamic responses of the numerical simply supported beam of 6 m length with Kn = 1010 N/m 

and Ks = 108 N/m due to a uniform step 1 kN load 
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Fig. 6 a Dynamic mid-span transverse deflections of the numerical simply supported beam of 6 m length 

with Kn = 0.5×108 N/m and Ks = 108 N/m due to a uniform step 1 kN load, for a period of 2 seconds 
 

 

Fig. 6 b Dynamic mid-span wb(t) of the numerical simply supported beam of 6 m length with Kn = 0.5×108 

N/m and Ks = 108 N/m due to a uniform step 1 kN load, for a period of 2 seconds 

  

(c) wa(t) at mid span (d) ua(t) near the roller 
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(e) ub(t) near the roller (f) Transverse deflections at 0.1 seconds 

  

(g) Slip at 0.1 seconds (h) Uplift at 0.1 seconds 

Fig. 6 c-h Dynamic responses of the numerical simply supported beam of 6 m length with Kn = 0.5×108 

N/m and Ks = 108 N/m due to a uniform step 1 kN load 

 

Letting the Kn/Ks go to infinity makes the current model behaves as if the uplift is not taken into account, and 

the usual assumption of neglecting Kn returns valid, contrary, of course, to the experimental evidence which 

suggests realistic Kn/Ks as low as 1/2. This is reflected, weakly, however, in Figs. 5 g and h where the slip is only 

less than twice the uplift despite a Kn/Ks ratio of a hundred. The quality of very large amplification factors remains 

valid, also, recording for the case of Fig. 5 an amplification factor of 19.7, which is quite large.   

Figure 6 shows, on the other hand, that adopting a realistic Kn/Ks ratio keeps the property of very high 

amplification factors as is or even more pronounced by registering a DAF of 20.6. Furthermore, the stark nature 

of the importance of uplift returns very strongly when comparing Figs. 6 g and h, that is when it becomes manifest 

that the uplift could be as much as two times the slip. 

All relevant boundary conditions are satisfied throughout Figs. 5 and 6. In particular, Figs. 5 g and 6 g indicate 

satisfying the zero derivative boundary conditions for both axial deformation fields. Furthermore, the expected 

relative magnitudes of axial deformations are also kept as usual. For instance, comparing Fig. 6 d to Fig. 6 e 

reveals that for the entire period of analysis, ua(t) near the roller remained an order of magnitude of the 

corresponding value of ub(t). This is explained by the more stringent constraint of the lower layer that is connected 

to a pin from one end, while the upper layer is free to move horizontally except for the horizontal spring constraint.  

For the purpose of keeping the presentation as concise as possible, only one numerical beam model is tested 

under the different boundary conditions of fixing both ends of the lower layer under step load conditions. 
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Fig. 7 a Dynamic mid-span transverse deflections of the numerical beam of 5 m length, the lower layer of 

which was fixed at both ends due to a uniform step 1 kN load, for a period of 2 seconds 

 

Fig. 7 b Dynamic mid-span wb(t) of the numerical simply supported beam of 5 m length the lower layer of 

which was fixed at both ends due to a uniform step 1 kN load, for a period of 2 seconds 
 

  

(c) wa(t) at mid span (d) ua(t) near the roller 
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(e) ub(t) near the roller (f) Transverse deflections at 0.1 seconds 

  

(g) Slip at 0.1 seconds (h) Uplift at 0.1 seconds 

Fig. 7 c-h Dynamic responses of the numerical beam of 5 m length, the lower layer of which was fixed at 

both ends due to a uniform step 1 kN load 

 

Comparing Fig. 4 a to 7 a, one could observe that the effect of fixing the two ends of the lower layer is quite 

manifest to the degree of reducing the dynamic amplification factor to a mere 30% of the original. This is, of 

course, due to the increase in overall rigidity produced by fixating the two ends of the lower layer of the beam.  

The use of other than transverse deflections to quantify the dynamic load factor is also possible, in principle. In 

this case, the use of ua(t) to quantify the dynamic load factor leads to the more stringent result of reducing the 

dynamic amplification factor to about 20% of the original due to the change in boundary conditions. The larger 

DAF still governs and the transverse displacements are more suitable to compute it, as is customary. 

4. Conclusions 

In the present paper, a successful one-dimensional finite element model for the analysis of composite beams 

of partial interaction was introduced. Verification of the results of this model to some of the relevant published 

literature has proved the veracity of this model and its implementation.  

Specific application of the present model to the uniform step loading of such beams leads to a number of 

important conclusions. Prominent among those is that the dynamic amplification factors for those composite 

beams taking the maximum transverse deflections as a basis are quite large.  

More importantly, the contribution of uplift to the responses, which could be taken into account by introducing 

four displacement variables into the model, was found important. Certainly, it is not negligible, as is the usual 

conduct in the literature. This corroborated the works of the minority of researchers who took uplift into account 

in their works. 
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