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Free transverse vibration frequency analysis of Euler-Bernoulli beams on 
Winkler foundation (EBBoWF) is a significant part of their analysis for 
averting failures by resonance. Resonant failure of EBBoWF occurs when 
the loading frequency exciting the vibration coincides with the least natural 
frequency. This study aims at using the Stodola-Vianello iteration method 
(SVIM) for the natural transverse vibration analysis of EBBoWF. Generally, 
the problem is governed by a non-homogenous partial differential equation 
(PDE) for forced vibrations, but simplifies to a homogeneous PDE for free 
vibrations where excitation forces are absent. For harmonic vibrations, and 
harmonic displacement response u(x, t), the equations are decoupled in 
terms of the independent spatial and time variables, resulting in a fourth 
order ordinary differential equation (ODE) in ( ),U x  the displacement modal 
function for u(x, t). The study’s focus is on homogenous, prismatic, isotropic 
thin beams leading to ODEs with constant parameters. SVIM was used to 
express the ODE as Stodola-Vianello iteration equations with four constants 
of integration, determinable via the boundary conditions. Specific 
application of SVIM to the EBBoWF with simple end supports used exact 
sinusoidal shape functions and boundary conditions to determine the 
integration constants. Convergence criterion at the nth iteration was used to 
find the eigenequation which was solved for the eigenvalues. The natural 
transverse vibration frequencies n  at the nth modes were found in terms 
of frequency parameters n  . Values of n  calculated for the first five 
modes n = 1, 2, 3, 4, 5, and for values of 4 4

1 l 1, 10, 100, 1000,= 10000

showed that the present SVIM gave exact results compared to other 
previous results. The exact solutions were obtained because exact shape 
functions were used in the SVIM equations resulting in satisfaction of the 
governing equations at the domain and the boundaries. 
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1. Introduction  

The eigenfrequency analysis of Euler-Bernoulli beams resting on Winkler foundations (EBBoWFs) under 

transverse free vibrations is important for determining the natural frequencies and in order for design to avert 

resonance failures. Resonant failures of dynamic systems occur when the excitation frequencies coincide with 

the structures natural vibration frequencies. The determination of the structures’ natural vibration systems thus 

become vital in design against resonance, as they are the excitation frequencies at which the systems amplitude 

of vibration become infinitely large (Al-Anbaki and Pavic, 2017). 

Studies on beams resting on elastic foundations have always proceeded with theoretical models of beams and 

the supporting soil which is generally described as elastic foundation. 

A typical simply supported beam with rectangular cross-section is shown in Figure 1. The breadth, thickness 

and span are identified on Figure 1. 

 

 

 

 

 

 

 

Fig. 1 Typical simply supported beam with rectangular cross-section 

Beams have been modelled theoretically based on their ratios of thickness (h) to span (l) as thin, moderately 

thick or thick. Beams with / 0.05h l   are called thin or slender beams. When 0.05 < h/l < 0.10, the beam is 

called moderately thick. When / 0.10,h l   the beam is called a thick beam. 

Thin beam problem is the one most commonly encountered and is the subject of this work. Thin beam 

theory, commonly called Euler-Bernoulli beam theory (EBBT), was first formulated by Euler and independently 

by Bernoulli. The EBBT formulation relied on the Euler-Bernoulli-Navier orthogonality hypothesis which is 

that the plane cross-sections that are orthogonal to the middle plane of the longitudinal axis of the beam would 

remain plane and orthogonal to the middle plane after deformation (Ike, 2018a, 2018b, 2021). 

It is further assumed that the middle surface of the beam’s longitudinal axis is free of stretching and strains, 

and is a neutral surface in bending deformation under dynamic or static applied loads. 

The implication of the EBBT orthogonality hypothesis is that the shear deformations that are responsible for 

distortions of the plane cross-section are disregarded or absent. This renders the EBBT limited to the analysis of 

thin beams for which shear deformation effects do not alter significantly the bending, vibration and buckling 

behaviours.  

Efforts to construct beam theories that adequately consider shear deformation effects have resulted in 

Timoshenko beam theory (TBT), shear deformation beam theories (SDBTs), and refined beam theories (ReBTs) 

(Sayyad and Avhad, 2019; Ike, 2022; Geetha et al., 2023; Sohani and Eipakchi, 2021). 

TBT is a first order shear deformation beam theory (FSDBT) that yields a constant shear stress across the 

thickness, and thus violates the shear stress free boundary conditions at the beam surfaces ( 0.5 )z h=   (Simsek, 

2016; Ike, 2019). TBT needs shear correction factors in order to predict accurate stress fields for the thick beam 

problem. Other SDBTs and ReBTs do not need shear correction factors and result in transverse shear variation 

profiles that comply with the shear stress free boundary conditions at the beam top and bottom surfaces 

(Razouki et al., 2020; Nguyen et al., 2022; Ghumare and Sayyad, 2017; Sayyad and Ghugal, 2017; Emadi et al., 

2023; Ike 2022). 

1.1. Foundation Models 

Models for elastic foundations have been proposed by Winkler, Pasternak, Hetenyi, Vlasov, and Kerr as one-

, two- and three parameter lumped models (Boudaa et al., 2021; Al-Azzawi and Daud, 2020, Akhazhanov et al., 

2023). The lumped parameters can be constant or variable parameters (Soltani and Asgarian, 2019; Motaghian 

et al., 2018; Al-Azzawi and Daud, 2020). For elastic foundations with variable parameters, the lumped 
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parameter values present a variation with the beams longitudinal coordinate variable, resulting in more 

complicated soil reactions, and yielding more complex Euler-Bernoulli beam on elastic foundation (EBBoEF) 

equations with variable coefficients. Such problems present more difficult solution algorithms. 

Winkler foundation model is a one-parameter model that assumes that the soil reaction at any point on the 

beam is directly proportional to the beam’s deflection at that point. This yields a simple equation for the soil 

reaction where the proportionality constant is the Winkler modulus, which can vary with the longitudinal 

coordinate of the beam, for variable Winkler foundations (Ike, 2018a, 2018b; Mutman and Coskun, 2013; Kacer 

et al., 2011; Ike, 2023a, 2023b, 2023c, Ike et al., 2023a). A typical figure of a beam resting on Winkler elastic 

foundation is shown in Figure 2. 

 

 

Fig. 2 Model of beam resting on a Winkler elastic foundation 

Pasternak, Vlasov, Hetenyi and Filonenko-Borodich foundations are two-parameter foundations, while Kerr 

foundation is a three-parameter lumped idealization (Dutta et al., 2021; Ike 2023a, Ike et al., 2023b). The two-

parameter-foundations overcome the lapses of lack of continuity between the vertical springs of the one-

parameter model by introducing a second shear coupling parameter to ensure the continuity of the deformation 

between springs. The resulting soil reaction is also simple and results in equally simple beam on two-parameter 

foundation equations over the domain. A typical beam resting on a two-parameter foundation is shown in shown 

in Figure 3. 

 

 

Fig. 3 Model of beam resting on a two-parameter elastic foundation 

Another elastic foundation model which is derived using the theory of elasticity is the continuum elastic 

foundation model. As implied by the name, the soil is modeled using a three-dimensional (3D) continuum 

model of the theory of elasticity. The 3D continuum model can be reduced to two-dimensional (2D) continuum 

models for beams. However, in each case, the elastic continuum model yields complicated soil reaction 

equations which also result to more complicated thin beam on elastic foundation equations. 

1.2. Literature Review 

Mutman and Coskun (2013) investigated the natural vibrations of nonhomogeneous EBBoWF using the 

Homotopy perturbation method (HPM) and obtained accurate natural frequencies for various end support cases. 

Balkaya et al. (2009) studied the natural frequencies analysis of thin beam using the differential tansform 

method, and found accurate natural frequencies for various boundary conditions studied. 

Chen (2000) obtained accurate natural vibration frequencies of prismatic EBBoEF using differential 

quadratic element method (DQEM). 

Kacer et al. (2011) used the differential transform method (DTM) for the natural vibration frequency 

solutions of EBBoWF for the case of variable Winkler foundation parameter. 
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Ike (2018b) used the Fourier sine transform method (FSM) to obtain exact free transverse vibration 

frequencies for EBBoWF with simple supports. 

Tazabekova et al. (2018) used He’s Variational iteration method (VIM) to study natural transverse vibration 

problems of EBBoWFs. Their study considered a variety of end supports; and the VIM results for clamped ends 

gave natural frequencies and mode shapes with fast convergence. They derived an efficient algorithm based on 

the He’s VIM which could readily be adapted for more complex elastic foundations. 

Adair et al. (2018) also investigated vibration of beams on elastic foundation using VIM; and obtained 

frequency parameters that compared well with other results from the literature. 

Rahbar-Ranji and Shalibaztabar (2017) studied the natural vibration frequency analyses of beams on 

Pasternak foundation using Legendre polynomial and Rayleigh-Ritz method. Natural frequency parameters for 

EBBoWF were obtained from their study when the second foundation parameter vanished. Bezerra, Soares and 

Hoefel (2017) used the finite element method (FEM) for the free vibration analysis of Euler-Bernoulli beam on 

Pasternak foundation. Solhani and Eipakchi (2020) derived the governing equations of a vibrating beam with 

moderately large deflection and arbitrary cross-section using the first order shear deformation theory. Their 

beam was considered homogeneous, isotropic and it was subjected to axial loads. The von-Karman equations 

were used for the kinematic and Hooke’s law for the constitutive equations. Ofondu et al. (2018) used the 

Stodola-Vianello iteration method (SVIM) for the critical buckling load analysis of Euler columns but did not 

study EBBoWFs. Ike et al. (2023a, 2023b) used SVIM for the critical buckling load solutions of EBBoWF and 

Euler-Bernoulli beam on two-parameter foundations (EBBo2PFs) respectively for the cases of clamped ends. 

They found satisfactory solutions with buckling shape functions that were not exact. They however did not 

study free vibration problems of EBBoWF. Ike (2023a) used SVIM to find exact buckling solutions for 

EBBoWF with simple end supports, but did not consider free vibration analysis. The work used exact buckling 

shape functions. 

Ike (2023b) used exact shape functions to find the buckling loads of Euler-Bernoulli beam on Pasternak 

foundations (EBBoPFs) but did not consider free vibration studies of Euler-Bernoulli beams on elastic 

foundations (EBBoEFs). Ike (2023c) used SVIM and polynomial shape function to determine critical buckling 

load solution for EBBoWF, but did not study free vibration analysis of EBBoWF. Ike (2023d) studied SVIM 

implementation for EBBo2PFs via polynomial basis functions, and obtained satisfactorily accurate solutions for 

cases with simple supports, but did not consider free vibration studies. Ike (2023e) studied free vibration of 

EBBoWF using generalized integral transform method. In a recent paper, Ike (2024) implemented the SVIM for 

the “free torsional vibration analysis of monosymmetric box-beam bridges” with simple supports and obtained 

exact solutions via exact shape functions. This paper presents SVIM in a novel way for thee free vibration 

analysis of EBBoWF. The work is presented in a novel rigorous first principles manner and exact shape 

functions are used to obtain the SVIM equations. 

2. Governing differential equation of vibratory motion for Euler-Bernoulli beam on 
Winkler foundation 

The governing partial differential equation (GPDE) of transverse vibratory motion for an Euler-Bernoulli 

beam resting on a Winkler foundation (EBBoWF) is given by the nonhomogeneous partial differential equation 

(PDE) when there is a forcing function q(x, t). 
4 2

4 2

( , ) ( , )
( , ) ( , )

 
+ +  =

 

u x t u x t
EI ku x t A q x t

x t
       (1) 

where 0 , 0x l t     

In Equation (1), u(x, t) is the transverse deflection, k is the Winkler foundation constant, x is the longitudinal 

axis of the beam, l is the length of the beam, t is time, A is the cross-sectional area of the beam,   is the mass 

density of the beam material, E is the Young’s modulus of elasticity of the beam material, I is the moment of 

inertia of the beam, q(x, t) is the applied transverse dynamic load. 

For natural vibrations, there is no applied excitation force, and 

( , ) 0q x t =            (2) 
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The GPDE simplifies to the following homogeneous form of Equation (1): 
4 2

4 2
0

u u
EI ku A

x t

 
+ +  =

 
         (3) 

For harmonic vibrations, the response is expectedly harmonic, and u(x, t) can be expressed as the harmonic 

function: 

( )( , ) ( )cos nu x t U x t=  +           (4) 

wherein   is the phase angle, n  is the natural frequency and ( )U x  is the displacement modal function. 

Then from Equation (4), the GPDE is expressed in the decoupled form: 

4 2

4 2

( ) ( )
cos( ) ( )cos( ) cos( ) 0n n n

U x U x
EI t kU x A t

x t

 
 +  +  +  +   +  =

 
    (5) 

Simplifying, 

4
2

4

( )
( ) ( ) cos( ) 0n n

d U x
EI kU x A U x t

dx

 
+ −    +  =  

 

       (6) 

Hence, rearranging Equation (6) gives the homogeneous ordinary differential equation (ODE) in ( ) :U x   

24

4

( )
( ) 0nk Ad U x

U x
EIdx

 −  
+ = 
 
 

         (7) 

Or, 
24

4

( )
( ) 0nAd U x k

U x
EI EIdx

  
+ − = 
 
 

        (8) 

Introducing nondimensional parameters, yields: 

( )
4

4 4
14

( )
( ) 0+  − =n

d U x
U x

dx
         (9) 

where 4
1

k

EI
 =   

2 2
4   

 = =n n
n

A m

EI EI
         (10) 

m  is the mass per unit length of the beam, = m A   

n is the vibration mode number. 

 

3. Stodola-Vianello iteration method (SVIM) 

Equation (9) is expressed as: 

4
2 4

14

( )
( ) ( )=  −n

d U x
U x

dx
         (11) 

Integrating once, 

3
4 4

1 13
0

( )
( ) ( )=  − +

x

n

d U x
U x dx c

dx
        (12) 

where c1 is an integration constant 

4 4
1 1

0

( ) ( ) ( ) =  −  +
x

nU x U x dx c          (13) 

Integrating, 
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2
4 4

1 1 22
0 0

( )
( ) ( )=  − + + 

x x

n

d U x
U x dxdx c x c

dx
       (14) 

c2 is the second integration constant 

 

Integrating again,  

2
4 4 1

1 2 3

0 0 0

( )
( ) ( )

2
=  − + + +  

x x x

n

c xdU x
U x dxdxdx c x c

dx
      (15) 

c3 is the third constant of integration 

Integrating again, 

3 2
4 4 1 2

1 3 4

0 0 0 0

( ) ( ) ( )
6 2

=  − + + + +   
x x x x

n

c x c x
U x U x dxdxdxdx c x c      (16) 

c4 is the fourth integration constant 

The four integration constants are found by applying the boundary conditions. For simply supported ends x = 0, 

x = l, 

( 0) ( ) 0

( 0) ( ) 0

= = = =

 = = = =

U x U x l

U x U x l
         (17) 

For Euler-Bernoulli beam (EBB) clamped at the ends x = 0, x = l, the boundary conditions are given by: 

( 0) ( ) 0

( 0) ( ) 0

U x U x l

U x U x l

= = = =

 = = = =
         (18) 

For EBB clamped at x = 0, and simply supported at x = l, the boundary conditions are given by: 

( 0) ( ) 0

( 0) 0

( ) 0

U x U x l

U x

U x l

= = = =

 = =

 = =

          (19) 

The SVIM iteration equation becomes 

3 2
4 4 1 2

1 1 3 4

0 0 0 0

( ) ( ) ( )
6 2

+ =  − + + + +   
x x x x

n n n

c x c x
U x U x dxdxdxdx c x c      (20) 

2
4 4 1

1 1 2 3

0 0 0

( ) ( ) ( )
2

+ =  − + + +  
x x x

n n n

c x
U x U x dxdxdx c x c       (21) 

4 4
1 1 1 2

0 0

( ) ( ) ( )+ =  − + + 
x x

n n nU x U x dxdx c x c        (22) 

4 4
1 1 1

0

( ) ( ) ( )+ =  −  +
x

n n nU x U x dx c         (23) 

 

4. Results 

4.1. Euler-Bernoulli beam on Winkler foundation with simple supports at x = 0, and x = l 

The EBBoWF with simple supports at the left and right hand ends is shown in Figure 4. For EBB with 

simple supports at x = 0, and x = l, modal shape function that satisfies boundary condition is: 

( ) sinn n

n x
U x a

l


=           (24) 
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where an is the amplitude of ( )nU x  and ( )sin n x
l

  is the shape function that satisfies the simply supported 

conditions. 

 

 

 

 

Fig. 4 Free vibrating simply supported Euler-Bernoulli beam on Winkler foundation 

 

Then by the SVIM, 

3 2
4 4 1 2

1 1 3 4

0 0 0 0

( ) ( ) sin
6 2

+


=  − + + + +   

x x x x

n n n

c x c xn x
U x a dxdxdxdx c x c

l
    (25) 

4 4
1 1 1 2

0 0

( ) ( ) sin+


 =  − + + 

x x

n n n

n x
U x a dxdx c x c

l
       (26) 

Simplifying, gives: 

2
4 4

1 1 1 2( ) ( ) sin+

   
  =  − − + +    
n n n

l n x
U x a c x c

n l
      (27) 

4 3 2
4 4 1 2

1 1 3 4( ) ( ) sin
6 2

+

 
=  − + + + + 

 
n n n

c x c xl n x
U x a c x c

n l
     (28) 

Applying the boundary conditions, 

2( 0) 0U x c = = =           (29) 

2
4 4

1 1( ) 0 ( ) sin 0
 

 = = = −  −  + = 
 

n n

l
U x l a n c l

n
      (30) 

1 0c =             (31) 

4( 0) 0U x c= = =           (32) 

4
4 4

1 3( ) ( ) sin 0
 

= =  −  + = 
 

n n

l
U x l a n c l

n
       (33) 

3 0c =             (34) 

Thus, 
4

4 4
1 1( ) ( ) sin+

 
=  −  

 
n n n

l n x
U x a

n l
        (35) 

At convergence of the iteration, after the nth iteration, 

1( ) ( )n nU x U x+ =           (36) 

Then applying the convergence criterion yields: 
4

4 4
1 1( ) sin ( ) sin+

  
= =  −  

 
n n n n

n x l n x
U x a a

l n l
       (37) 

Simplification of Equation (37) gives the characteristic eigenvalue equation as: 
4

4 4
11 ( )
 

=  −   
 

n

l

n
          (38) 

Thus, further simplification of Equation (38) gives: 
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4
4 4

1

 
 −  =  

 
n

n

l
          (39) 

Expanding in terms of 
4  gives: 

 
4 2

4 4
1

 
 =  + = 

 

n
n

mn

l EI
         (40) 

Then, solving for 
2
n  gives: 

4
2 4

1n

EI n

m l

  
  =  +     

          (41) 

Taking the square root of both sides of Equation (41) gives: 

4
4 4 4 4
1 1 2

1
( ( )

 
 =  + =  +  

 
n

n EI EI
l n

l m ml
       (42) 

Expressing Equation (42) in terms of frequency parameter ,n  gives: 

2 2
n n n

EI EI

m A
 =  = 


          (43) 

where 

4
2 4 4 4

1 12

1
( ) ( )

 
 =  + =  +  

 
n

n
l n

l l
      (44) 

2
2  

 =  
 

n
n

l
           (45) 

 

( ) ( )n l n  = +2 4 4
1           (46) 

When 4

4

k

EI
=             (46a) 

where 
4  is another way to express the soil-structure parameter. Then, 

4 4
14

k

EI
=  =             (46b) 

4.2. Results for transverse vibrations of simply supported Euler-Bernoulli Beam (EBB) 
without Winkler foundation 

The. SVIM results can be used to obtain the natural transverse vibration frequencies of EBB without Winkler 

foundation by inputing  =4
1 0  into Equation (42). Then, 

n
n

n

l l

 


  
= =   
   

22
2            (47) 

and n
EIn

Al






 
=  
 

2

           (48) 

Equation (48) is identical with the exact solution for transverse vibration frequencies of EBB. 

Thus, the relationship between 1  and   is presented as Equation (46b). The values of n  ae calculated for 

values of 
4 4
1 l  varying from 

4 4
1 l 0, 1, 10, 100, 1000,=  and 10,000 and presented in Table 1 together with 

previous values of n  computed by Rahbar Ranji and Shahbaztabar (2017), Ike (2023). 



IRAQI JOURNAL OF CIVIL ENGINEERING (2024) 018–002                                                                                                                                                                                        81                                                                                                                                                                                                                           

 

Furthermore, normalized free transverse vibration frequencies of simply supported EBBoWF for values of 

the following beam parameters 1,E A= =  =   
4 4
1 1 =l  are determined and presented in Table 2 together for 

comparison purposes with previous results that used Homotopy perturbation method (HPM), Differential 

transform method (DTM), Differential quadrature element method (DQEM) and exact solution method. 

 

Table 1 – Transverse natural frequency parameters for the first five vibration modes for the natural 
vibration of simply supported EBBoWF. 

4 4
1 l
 

1  2  3  

Present 
study 

GITM 

Ike 
(2023) 

Rahbar-
Ranji and 
Shahbazta
bar (2017) 

Present 
study 

GITM 

Ike 
(2023) 

Rahbar-
Ranji and 
Shahbazta
bar (2017) 

Present 
study 

GITM 
Ike 

(2023) 

Rahbar-
Ranji and 
Shahbazt

abar 
(2017) 

1 3.149624
682 

3.149624
682 

3.1496 6.284192
925 

6.284192
925 

6.28426 9.425076
572 

9.425076
572 

9.4251 

10 3.219291
184 

3.219291
184 

3.2193 

(3.228)* 

6.293239
752 

6.293239
752 

6.2932 

(6.293)* 

9.427762
796 

9.427762
796 

9.4277 

(9.427)* 

100 3.748364
25 

3.748364
25 

3.7484 

(3.748)* 

6.381633
292 

6.381633
292 

6.3816 

(6.382)* 

9.454499
603 

9.454499
603 

9.4545 

(9.454)* 

1000 5.755620
336 

5.755620
336 

5.7556 

(5.755)* 

7.112107
04 

7.112107
04 

7.1121 

(7.112)* 

9.710176
091 

9.710176
091 

9.7102 

(9.710)* 

10,0
00 

10.02426
382 

10.02426
382 

10.0243 10.36873
551 

10.36873
551 

10.3687 11.56520
706 

11.56520
706 

11.5652 

4 4
1 l  

 

4  5  

Present 
study 

GITM 

Ike (2023) 

Rahbar-Ranji and 
Shahbaztabar 

(2017) 

Present 
study 

GITM 

Ike (2023) 

Rahbar-Ranji 
and 

Shahbaztabar 
(2017) 

1 12.5664966 12.5664966 12.5665 15.70802772 15.70802772 15.7080 

10 12.56763202 12.5676320
2 

12.5676 

(12.568)* 

15.70860826 15.70860826 15.7086 

(15.709)* 

100 12.57894997 12.5789499
7 

12.5790 

(12.579)* 

15.71440961 15.71440961 15.7144 

(15.715)* 

1000 12.69050177 12.6905017
7 

12.6905 

(12.690)* 

15.77207279 15.77207279 15.7721 

10,000 13.67163814 13.6716381
4 

13.6716 16.31668659 16.31668659 16.3167 

*Note: the frequency parameter results that are enclosed in parenthesis and asterisked are taken from Zhou 

(1993). 
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Table 2 – Normalized natural transverse vibration frequency parameters of simply supported EBBoWF 
for  = =  = = 1,E A I  =4 4

1 1,l  for first five modes of vibration. 

Method / Reference 2
1  

2
2  

2
3  

2
4  

2
5  

SVIM 

(Present) 

9.92014 39.4911 88.8321 157.9168 246.7421 

HPM 

(Coskun, 2003) 

9.92014 39.4911 88.8321 157.9168 246.7421 

DTM 

(Balkaya et al., 2009) 

9.92014 39.4911 88.8321 – – 

DQEM 

(Chen, 2000) 

9.92014 39.4911 89.4002 – – 

Exact solution 

(Ike, 2018, 2023) 

9.92014 39.4911 88.8321 157.9168 246.7421 

 

4.3. Numerical results 

In order to further illustrate the effects of the Winkler foundation parameters on the natural transverse 

vibration frequencies of a simply supported thin beam on a Winkler foundation, some numerical examples are 

presented. 

A beam of uniform cross-section with ,= 210E GPa  
3kg/m , = 7850  / .= 0 05h l  and m= 2l  is considered. 

Table 3 presents the comparison between the SVIM and FEM solutions for a simply supported EBBoWF. 

The second column presents the transverse frequency parameters for the present study without Winkler 

foundation, ( ); =4 4
1 0l  the third column presents the Bezerra et al. (2017) solution without Winkler foundation; 

the fourth column presents the SVIM solution for Winkler foundation .;  or .
 

= = = 
 

4
4 4
1

5
5 1 25

4

kl
l

EI
 The fifth 

and sixth columns present Bezerra et al. (2017) solutions using 30 elements and 70 elements respectively. 

Table 3 – Comparison of transverse vibration frequency parameters 

Vibration 
mode 

number 

Without foundation . =4
1 1 25  

Present Bezerra et al. 
(2017) 

Present Bezerra et al. (2017) 

FEM 30 
elements 

FEM 70 
elements 

1 9.87696 9.870 11.064 11.064 11.064 

2 39.4784 39.478 39.794 39.794 39.794 

3 88.8264 88.826 88.968 88.968 88.967 

4 157.9137 157.914 157.996 157.996 157.993 

5 246.7401 246.740 246.804 246.804 246.791 

5. Discussion 

The GPDE for transverse vibratory motion of EBBoWF represented by a fourth order non-homogeneous 

PDE for forced vibration cases, reduces to homogeneous PDE for natural vibrations where excitation forces are 

absent. For harmonic vibrations, and harmonic displacement response u(x, t), the homogeneous PDE become 

decoupled in terms of the independent spatial and time variables; resulting in an ordinary differential equation 

(ODE) of fourth order in terms of ( ),U x  the displacement modal function for u(x, t). For homogeneous, 

prismatic, isotropic thin beams, the ODE has constant parameters.  



IRAQI JOURNAL OF CIVIL ENGINEERING (2024) 018–002                                                                                                                                                                                        83                                                                                                                                                                                                                           

 

SVIM was used to express the ODE in Stodola-iteration forms with fourth constants of integration that are 

determined using the end support conditions of deformation and forces. The SVIM equations were then used to 

solve the EBBoWF free vibration problem for the case of simple supports at x = 0, and x = l. Exact shape 

functions were implemented in the SVIM using sinusoidal functions that satisfy the simply supported boundary 

conditions at the beam ends. The criterion for convergence of the nth SVIM iteration scheme was utilized to find 

the eigenvalue equation, which was solved for nontrivial cases to get the eigenvalues. The natural transverse 

vibration frequencies n  were found in terms of frequency parameters 
2n  for the nth vibration mode. 

2n  was 

found to depend upon the beam foundation parameter 
4
1  and the vibrating mode, n. Values of n  were 

calculated for values of
4 4
1 l 1, 10, 100, 1000, 10000=  and n = 1, 2, 3, 4, 5; and presented in Table 1, together 

with previously computed values by Rahbar-Ranji and Shahbaztabar (2017), Zhou (1993) and Ike (2023). 

Table 1 illustrates that the present SVIM results for n  for all the first five modes of vibration are identical 

with the previous results presented using the Generalized integral transform method (GITM) by Ike (2023), 

Table 1 further establishes that the present SVIM results for n  are in close agreement with previous results by 

Zhou (1993) and Rahbar-Ranji and Shahbaztabar (2017).  

Table 2 presents natural transverse vibration frequency parameters 
2n  for simply supported EBBoWF for 

values of 1,= =  = =E A I
4 4
1 1 =l  for the first five vibration modes. 

Table 2 demonstrates that the parameters 
2n  obtained in the present study are identical for all the first five 

modes of transverse vibration with the exact solution by Ike (2023) and the previous solutions using Homotopy 

perturbation method by Coskun (2003); Differential transform method (DTM) by Balkaya et al. (2009) and 

Differential quadrature element method (DQEM) by Chen (2000). 

Table 3 shows that the present SVIM results for EBB without elastic foundation ( ) =4 4
1 0l  are similar to 

results by Bezerra et al. (2017). Table 3 also shows that for . , =4 4
1 1 25l  or ,=

4

5
kl

EI
 the present SVIM results 

are closely identical with finite element method results presented by Bezerra et al. (2017). 

 

6. Conclusion 

This study has presented SVIM for solving natural transverse harmonic vibration problems of homogeneous, 

isotropic, prismatic EBBoWFs. The governing PDE for the transverse forced vibrations of EBBoWF is a non-

homogeneous PDE which has constant parameters for homogeneous, isotropic, prismatic thin beams, and 

variable parameters for non-homogeneous, non-isotropic, non-prismatic thin beams. For natural vibrations, there 

is no excitation force and the PDE reduces to homogeneous PDE with constant parameters for the case of 

prismatic, homogeneous, isotropic thin beam studied. 

In conclusion: 

(i) SVIM iteration formulation of the governing ODE for the decoupled homogeneous PDE was obtained 

using four successive integrations, and contains four constants of integration which are determinable 

using the four boundary conditions for the problem. 

(ii) For simply supported EBBoWF studied, exact sinusoidal vibration shape functions were used in the 

SVIM equations and boundary conditions used to evaluate the four integration constants; thus leading 

to a full determination of the SVIM equation for the nth vibration mode. 

(iii) The criterion for convergence of the SVIM equations at the nth iteration mode, which is the equality 

of the vibrating functions at the nth and (n + 1)th iterations, established the vibration function for the 

nth iteration. 

(iv) The criterion for non-triviality of the solutions was used to derive the characteristic vibration equation 

at the nth vibration mode. 
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(v) The characteristic vibration equation gave exact eigenvalues for the simply supported EBBoWF for 

the nth vibration mode. 

(vi) Exact eigenvalues were used to obtain the exact vibration frequencies for the first five modes of 

vibration. 

(vii) The SVIM solution of the simply supported EBBoWF is exact because exact vibration shape 

functions were used in the formulation for the nth vibration mode. 

(viii) The SVIM solutions were identical to the exact solutions obtained using the GITM by Ike (2023) and 

using HPM by Coskun (2003). 

(ix) The effect of the Winkler foundation results is an increase in the natural frequencies of vibration of 

the EBBoWF for all the vibration modes. 

 

Notations 

EBBoWF Euler-Bernoulli beam on Winkler foundation 

SVIM  Stodola-Vianello iteration method 

PDE  partial differential equation 

ODE(s)  ordinary differential equation(s) 

x  longitudinal (axial) coordinate 

t   time 

GITM  generalized integral transform method 

DTM  differential transform method 

HPM  homotopy perturbation method 

DQEM  differential quadrature element method 

h  thickness 

l  span 

EBBoEF Euler-Bernoulli beam on elastic foundation 

3D  three-dimensional 

2D  two-dimensional 

VIM  variational iteration method 

FSM  finite sine transform 

EBBo2PF Euler-Bernoulli beam on two-parameter foundations 

GPDE  governing partial differential equation 

u(x, t)  transverse deflection 

k  Winkler foundation constant 

A  cross-sectional area of the beam 

  mass density of the beam material 

E  Young’s modulus of elasticity of the beam material 

I  moment of inertia of the beam 

q(x, t)  applied transverse dynamic load 

  phase angle 

n  natural frequency 

( )U x    displacement modal function 

1  parameter defined in terms of k and EI 

n  parameter defined in terms of A, n and EI 

m    mass per unit length of beam 

n   vibration mode number 

c1, c2, c3, c4 constants of integration 

n  vibration frequency parameter defined in terms of 1, n and l 

EBBT  Euler-Bernoulli beam theory 

TBT  Timoshenko beam theory 
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SDBTs  shear deformation beam theories 

ReBTs  refined beam theories 

EBB  Euler-Bernoulli beam 

FEM  finite element method. 
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