Capacity and level of service are the control points of the analysis of intersections and must be fully considered to evaluate the overall operator of the intersection. The objectives of the present study include the analysis, evaluation and improvement of the operation for Stadium Intersection in Samawah city and to present the best proposal to enhance the performance from the capacity point of view. To achieve these objectives, the estimated distribution of the traffic data in different directions that required for the traffic and geometrical analysis were gathered manually, while HCS traffic program is used for the requirements of traffic analysis process. It has been concluded that the flyover between Al-Zwaid Street – Stadium Street (Proposal No.5) is the best proposal to improve the operation ability of Stadium Intersection.
The hyperbolic model is a simple stress-strain relationship based on the concept of incrementally nonlinear elastic behavior. The hyperbolic stress-strain relationship was developed for use in finite element analysis of stresses and movements in earth masses. To estimate hyperbolic parameter values required for nonlinear finite element analysis, data used from the triaxial compression tests for the gypseous soils exposed to the effect of drying and wetting cycles carried out by (Mohammed, 1993). From these data, the parameters (C, φ, K, n, Rf), which are required by Duncan-Chang model, 1970 can obtained for analyses of dams, excavations and various types of soil-structure interaction problems. In addition, it can be found that the primary loading modulus, K, the exponent number, n, and the failure ratio, Rf, have random values during rewetting cycles for CU and UU triaxial compression tests
Wadi Houran is one of the largest valleys in Iraq. Although it is discharging billions of rainfall water over/during many years to Euphrates river, it's almost devoid of agricultural investment. The current study aims to focus on this important valley water resource and study the possibility of constructing a series of small dams to store rainfall water and planting forestry and establishing a natural reserve that is able to sustain and improve ecology system. Target area of 4000 km2 is selected in the midstream of the valley. In general, it is about one billion m3 of rainwater flowing to Euphrates River during some years with yearly average values about 400 Mm3. Four dams were constructed to store about 46 Mm3 of rainwater. It is possible to construct small-dam-series of optimal height and location to expand the rainwater harvesting and groundwater recharging. A Current study was done and aimed to establish of oases and natural reserves in order to improve climate conditions, minimize the dust and CO2, mitigation of summer high temperature and decrease the soil erosion due to torrents. This study recommended constructing 13 optimal height dams that store about 303 Mm3 of water, and increase the water surface area of reservoirs in this valley from 15 to 90 km2which leads increase the water volume that is recharging ground water from 4.7 Mm3 to 28 Mm3 per year.
The problem of discarded tires has received a lot of attention from many authors. Incorporation of rubber aggregate recycled from waste tires is one of the solutions to this issue. This research is based on evaluating fresh and hardened properties such as slump flow, T500, segregation resistance, and L-box tests, compressive strength, impact resistance, and flexural toughness. Rubber aggregate replacements in the self-compact concrete mixes was 10% by volume of fine aggregate. Additionally, both PET and steel fibers are utilized at a volume rate of 0.25%.The outcomes indicate that introducing rubber declines rheological and hardened properties, whereas incorporating hybrid fibers enhances hardened properties such as compressive strength, impact energy, and flexural toughness. The best increase impact energy was obtained at roughly 166.6% when 0.25% hybrid fibers and 10% rubber were used. 74.21 was the greatest increase in flexural toughness when 0.25% hybrid fibers (SCCH3) were used. As for the compressive strength, it was the highest by about 11%.
ABSTRACT:The gypseous soils are distributed in many regions in Iraq and other countries. Therefore, it is necessary to study the behavior of such soils due to the large damages that affects the structures founded and constructed in or on it.This research is concerned with studying the effect of leaching soil process on the stability of an embankment erected on foundation gypseous soil. The finite element method is adopted in this research. The analyses carried out using a nonlinear, increment, and stress-dependent finite element computer program. The hyperbolic stress-strain parameters used in the finite element analyses are estimated by the data collected from triaxial compression tests of some researchers. The analysis of the embankment problem carried out, shows that the leaching process for foundation gypseous soil increases the displacements and deformations of the embankment and its foundation. Finally, this research necessitate the success using of the finite element method in design and analyses of the important structures and buildings erected on gypseous soils that may expose to the effect of leaching process. This means that there is possibility to predicate the behavior of structure by a powerful means to establish the suitable solutions for any problems that may be occurred as a result of the present gypseous soil.
Surface infiltration plays an important role in watershed management and flood forecasting; Furthermore increase the efficiency of irrigation system and reduce water losses during the irrigation process. Experiments carried out on the Wadi AL-Ratga of the western desert, Iraq during 2019; which had been selected as a study area. The infiltration rate data were collected using double ring infiltrometer at selected ten points of the selected study area. The duration of double ring test ranged between 30 minutes to one hour based on the infiltration speed in the soil, about 6 to 12 readings were recorded for the infiltration rate at each points. The aim of this paper is to check the ability of the common infiltration models such as Horton’s, Kostikov’s and Philip’s to accurate estimated infiltration rate. These models were fitted to the observed infiltration data for estimation of models parameters and to find appropriate model for this region. Horton’s infiltration model’s parameters such as infiltration decay constants ’k’ And the value of infiltration capacity at onset of infiltration (fo) had been calculated in the ranges of 3.38-6.97 hr-1 and 21 to 47.8 cm.hr-1; respectively; for all the ten points. Philip’s infiltration model’s parameters such as the values of conductivity constant ‘A’ and sorptivity ’S’ were obtained in the ranges of 3.48-12.49 cm.hr-1 and 9.96 to 17.2 cm/hr0.5; respectively. Similarly; the Kostikov’s model’s parameters ‘a’ and ‘b’ were obtained in the range of 8.85-24.38 and 0.732-0.829; respectively. Based on results of infiltration models at the selected points the predicated parameters have realistic capability predication. The results showed that all models provided the acceptable values for Root Mean Square Error (RMSE) as1.45, 2.01, 1.88 cm.hr-1 for Horton’s, Kostikov’s and Philip’s model; respectively; The highest model efficiency (ME) as 99% for all models; and the maximum Relative Error (RE) values as 16% at all points except point 2 was calculated as 21%. This indicated that infiltration can be well-described by the Horton’s model little more than other models at the study area.
Fallujah is one of Iraqi cities which need a comprehensive transport plan for its increased urban development and have increasing in umber of moving vehicles, caused an increasing in population with changes in the standard of living and daily trips especially at the central area, which causes jamming in transportation network. For the purpose of study, the study area in the north sector of Fallujah city is considered as one sector consists of (10) zones containing about (11954) dwelling units. Home interview survey was made of random sample which represent 5% of the study area population, and data collected through this zone. Data was related to socioeconomic characteristics of the population. The collected information solve by using the method multi – linear regression by a package(SPSS). The total persons trips per dwelling unit and various purposes were investigated. A trip production model in Fallujah city, through find relationship between socioeconomic characteristics (car ownership, family income, employee, family no., population, family size, time and cost of trip, distance to the center and area of household unit). It was found that the number of families is the most influential variable to trip production model.
Increasing the bearing capacity of shallow foundations is a significant challenge in the urban environment due to increased population growth. This paper presents the bearing capacity of circular foundations encircled by a diaphragm wall. In this study, the effects of diaphragm wall depth (0.5 D, D, 2 D) (D is the foundation diameter) of the foundation on the bearing capacity of the foundation are investigated. Varying relative densities of sand soil (loose, medium, and dense) are utilized. The results of the experimental tests show that the diaphragm wall possesses an influence upon the settlement and the foundation bearing capacity. Where, the capacity of bearing increased as the diaphragm wall depth increased. On the other side, increasing the depth leads to a decrease in the settlement ratio of about 57%. The results of experimental work also demonstrated that the best depth is between D and 2D for all types of relative densities
The Light Falling Weight Deflectometer (LFWD) was developed to estimate the in-situ elastic modulus directly to the layers near the base as subgrade and subbase layers. The field tests were carried out on selected sections from landfill project within Anbar Province. Furthermore, Forty test sections have been constructed and tested at the Civil Engineering Department- University of Anbar. All sections were tested using the ZFG 3000 model - LFWD in companion with the Plate Load Test (PLT) which were used as reference measures. Regression analyzes were performed to determine the best correlation between the elastic modulus obtained from LFWD and PLT tests. ANN model was used to calculate Evd and compare the regression statistical model. It was found that the ANN model showed a higher performance than regression analysis in predicting Evd. Satisfactory correlations were obtained, which showed that LFWD could be a promising device for in-situ characterizing of subsurface and subgrade layers.
In this study, the structural behaviour of RC-deep beams of glass fibre-reinforced polymer (GFRP) rubberized concrete is investigated. Rubberized concrete is manufactured by replacing fine sand aggregate with rubber crumbs in volumetric replacement ratios. The main variables were the crumb rubber content (0%, 10%, and 20%) and the main reinforcement ratio. Tested Six samples of deep beams with different dimensions (b = 150, h = 300 mm, L= 1400 mm) were under a four-point load until failure. The parameters under investigation were the mechanical properties of mixtures, load-midspan deflection curves, toughness, and the load-strain relationship. The results indicate that the increased crumb rubber content led to a decrease in the mechanical properties of rubberized concrete mixtures. It was found that the behaviour of all samples of rubberized concrete affected the deflection load curve, the ultimate load, and the increase in deflection. The sample R2-10% Rub showed the highest toughness among the tested samples, with an increase of 301.6% compared to the reference.
Abstract In this study, a theoretical analysis is presented to estimate the in-plane large displacement elastic stability behavior of structures having non-prismatic members of linearly and nonlinearly varying sections resting on elastic foundation (Winkler type) and subjected to static loads applied at joints only. The analysis adopts the beam-column approach and models the structural members as beam-column elements resting on distributed springs. The formulation of beam-column element is based on Euler approach allowing for the influence of the axial force on bending stiffness. Changes in member chord length due to axial deformation and flexural bowing are taken into account. The stability and bowing functions are estimated using methods of finite differences and finite segments. Also, approximate results have been obtained by using approximate stability and bowing functions of linearly and nonlinearly tapered members resting on elastic foundation. A computer program has been coded in QB language to carry out the proposed analysis of structures with prismatic or non-prismatic members of linearly and nonlinearly varying sections resting on elastic foundation. As a result of this study; the only difference between the analysis of non-prismatic members resting on elastic foundation and those which are not, when adopting the beam-column approach, is represented in the stability and bowing functions, and this is reflected directly on the tangent stiffness matrix.
The Impact of silica fume existence and its content with the duration of curing on concrete compressive strength (ordinary and high) has investigated experimentally. Two mixture sets were done in this work to examine the concrete ordinary and high strength. Every set involved four mixtures with varied silica fume proportions as a substitution of cement with (0, 5, 10 and 15 percent). Ninety-six cubes of concrete were prepared and cured by immersion in water to the required age (7, 28, 90 and 150 days). In ordinary concrete and high strength concrete, the results demonstrate that when silica fume used as a substitution with 15 %, the compressive strength of concrete gave the highest value. As compared with concrete having nil content of silica fume, the earned strength for high compressive concrete consisting of silica fume was relatively less than the corresponding ordinary concrete strength. However, continuously curing with water after 28 days produced a considerable increase in the compressive strength of concrete; such an increase in compressive strength was greater in the existence of silica fume
AbstractIn this paper a nonlinear finite element analysis is presented to simulate the fire resistance of reinforced concrete slabs at elevated temperatures. An eight node layered degenerated shell element utilizing Mindlin/Reissner thick plate theory with initial stiffness technique is employed. The proposed model considered cracking, crushing, and yielding of concrete and steel at high temperatures. More complicated phenomena like concrete transient thermal strain and concrete spalling are excluded in the present analysis. The validation of the proposed model is examined against experimental data of previous researches and shows good agreement.Keywords: Fire resistance, Material nonlinearity, Reinforced Concrete Slabs
In recent years, hospital waste has been one of the most serious issues in Iraq and other parts of the world. The current study aims to measure and analyze hospital waste output across all departments at the Ramadi Teaching Hospital. The data on waste generation rates gathered for the study were primarily based on existing records of field management of hospital waste over the course of eight months (one week per month) for all departments in the hospital; however, some random sampling information was provided to supplement the data. The results revealed that the estimated rate of medical waste creation at Ramadi hospital was between 144 and 188 kg/day, whereas the general (non-medical) waste generation was between (240-278) kg/day. In terms of patient numbers and per occupied bed, the average medical waste generation rates were from 0.60 to 0.90 kg/patient/day and (0.85-1.11) kg/bed/day, respectively, whereas the average general trash generation rates ranged from 0.86 to 1.15 kg/patient/day and 1.42-1.64 kg/bed/day. The recent analysis concluded that the hospital's segregation procedure is still inefficient, and there is room for improvement in terms of reducing hazardous medical waste creation
This research includes producing compacted concrete by rolling method and the possibility for using in highway construction field with studying the influence of adding waste plastic fiber resulting from manual cutting for bottles used in the conservation gassy beverage on different characteristics of this type of concrete. For the purpose of selecting mix proportions appropriate for rolling compacted concrete (RCC). Approved design method for ACI-committee (5R-207 .1980) was selected for this research. Destroying plastic waste by volumetric rates ranging between (0.5%) to (2%) was approved. Reference mix was produced for comparison. Tests were conducted on the models produced from rolling compacted concrete like compressive strength, flexural strength and split tensile strength. The analysis of the results showed that the use of plastic waste fibers (1%) has led to improve the properties of each of the compressive strength and flexural strength and split tensile strength compared with reference concrete. Compressive strength in 28 days with fiber ratio (1%) is higher than (52.15%) from compressive strength in 28 days of reference concrete. It can be also observed that each of the flexural strength and split tensile strength increases by (17.86, 25.61)%, respectively, from flexural strength and split tensile strength for the reference mix
This study presents an investigation of the mechanical properties of normal concrete reinforced with discarded steel fibers (DSFs) resulting from tire manufacturing. DSFs were added to concrete in two different volume fractions of (0.25 %, and 0.5 %), and these fibers have dimensions of (40 mm length×0.92 mm diameter). The results showed that the compressive strength of the concrete was enhanced by (8.8%, and 3.3%) by adding of DSFs. However, the workability of concrete decreased at all added ratios. While the density is slightly changed. Also, the results indicate that the modulus of elasticity shows slight increases by (3.06%, and 2.25%). Additionally, the incorporation of DSFs improves the splitting tensile strength and modulus of rupture significantly. For concrete mixes having volume fractions of 0.25% and 0.5%, the splitting tensile increased by (7.89%, and 23.68%), and the modulus of rupture increased by (6.67% and 25.58%), respectively. It was concluded that using this type of discarded fibers can improve the mechanical properties of concrete as an alternative type for other types of industrial fibers.
This paper includes an analysis to asses the behavior of stone columns using the finite element method and to provide bases and information helping geotechnical engineers to design foundations resting on weak soils reinforced with stone column. The axisymmetric quadrilateral element is adopted in the finite element program to simulate the soft soil and the stone column while the one-dimensional element is used to simulate the soft soil and the stone column-soil interface. The nonlinear inelastic stress-dependent model is used to simulate the behavior of the soil and the interface throughout the incremental loading stages adopting nonlinear parameters obtained from triaxial and direct shear stress. The analysis is carried first on a selected basic problem, to clarify the nonlinear of the column, in which a selected geometry, boundary condition, and material properties for both soil and interface as chosen. The rest of the analysis is grouped into the effect of some of the parameters concerning the geometry of the stone column and the material of column and adjacent soil are investigated. It was found that the increase in stone column length and in relative stiffness of stone column material to soil play an important role in increasing ultimate capacity of the stone column and in reducing settlements.
To preserve the natural materials, applying the principles of sustainable engineering, to approach the principle of zero waste and to contribute the solution of the negative environmental impact of two decades, which is caused by excessive use of bottles of polyethylene terephthalate (PET) in packaging, has led to the approach of alternative, clean and innovative technologies aimed at recycling and reuse to address this environmental problem. Proposed re-use empty bottles as a way to get rid of them and benefit from them at the same time the way, this method through which the empty bottles cutting into fibres using these fibres made of PET to improve the properties of concrete. Percentage of fiber that has been used are 1%, 1.5%, 2%, 3%, 4%, and 5%. Suitable tests were performed to measure properties of concrete reinforcement by recycle PET fibre such as compressive strength, splitting tensile strength, four-point bending strength, modulus of elasticity and toughness index. Flexural toughness tests were performed to measure the ductility capacities of reinforced concrete members with recycled PET fibre reinforced concrete. The results obtained indicate Toughness index was enhanced by using PET fibre reinforced concrete specimens, compared to no ductility performance of concrete specimens without fibre reinforcement. A significant change in ductility was when observed PET used fibre with 3%.
AbstractThe aim of this study is to analyze the slope stability for sections in Al-Furat River where engineering construction build on it, when a sudden decrease in the river water level happens. Two sections were chosen from the river in the area located about 35 km away from Ramadi city called Tel Aswad where undisturbed samples are taken and laboratory tests are done to obtain the soil parameters which are used in Geo-Slope program. The finite element method was applied in this study with elastic-plastic soil model. The analysis results show that the sections slope chosen from the river are stable. The second purpose of this analysis to reduce the risk of using earth structures when engineering construction build on it. Also, it is clear that the values of factor of safety calculated by the FEM are low compared with limit equilibrium methods.
The difficulty that faces the geotechnical engineers how to find the alternative and effective method to improve bearing capacity and reduce foundation settlement. Therefore, the skirt is considered one of the methods to improving the shallow foundation bearing capacity on different soil. The mechanism of skirt work is confinement soil below the foundation and decrease settlement of the foundation. Soil engineers are worked to devise this method as an alternative to pile foundation for conventional buildings. This paper reviews most of these studies of skirted foundations with different types of soil including laboratory tests, field tests, centrifuge models, numerical method and theoretical analysis; these studies are used in investigation the behaviors skirted foundations.
This research investigates the impact resistance of concrete slabs with different volume perecentage replacement ratios of waste plastic fibers (originaly made from soft drink bottles) as follows : 0.5%, 1% and 1.5%. Reference mix produced in order to compare the result. For the selected mixes, cubes with (100×100×100mm) were made to test compressive strength at age of (90) days. Flexural strength (Modulus of Rupture) test was also conducted using prisms sample of (500*100*100 mm) dimensions. The low-velocity impact test was conducted by the method of repeated falling mass where 1400gm steel ball was used. The ball falling freely from height of 2400mm on concrete panels of (500×500×50 mm) having a mesh of waste plastic fiber.The number of blows that caused first crack and final crack (failure) were determined, according to the former obtained results , the total energy was calculated. Results showed an improvement in mechanical properties for mixes containing plastic fibers compared with reference mix. For compressive strength the maximum increase in compressive strength was equal to (3.2%) at age of (90) days. Flexural strengths for mixes containing plastic fiber at ages 28, and 90 days are higher than that of these of reference mix. The maximum value of increaseing was (18%) for 28 days age of test and it was equal to (26%) for 90 days age of test for the mixture with plastic fiber content by volume equal to (1%) . Results showed a significant improvement in low-velocity impact resistance of all mixes contining waste plastic fibers when comparing with reference mix. Results illustrated that mix with (1.5%) waste plastic fibers by volume give the higher impact resistance at failure than the others. The magnitude of an increase over reference mix was equal to (340%).
Slurry infiltrated fiber concrete (SIFCON) is a relatively new high performance material and can be considered a special type of fiber concrete (FRC) with high fiber content. The matrix consists of a flowing mortar or cement slurry that must penetrate well through the network of fibers placed in the mold. SIFCON has excellent mechanical properties combined with high ductility and toughness values. SIFCON a relatively new material, is composed of mud (cement or cement and sand), water, a plasticizer (water reducer), and fibers. All previous studies have used waste steel fibers, steel fibers and other fibers, but in this study, plastic fibers were made from polyethylene terephthalate (PET) by cutting carbonated beverage bottles. The main objectives of this study are: Determination the effect of the waste plastic fiber volume ratio on the strength and deformation of (SIFCON) samples under the influence of bending loads. Both flexural strength and toughness properties were determined by testing samples (100×100×400) mm at 28 and 56 days of age. The results obtained from these tests were compared with those performed on conventional tests. Aspect Ratio equal to (36.8) and three volume ratios (3%, 5% and 7%) of the total volume of the concrete mixture were used to add fibers with different volume ratios. A conventional concrete mix was created as a reference for comparison. Bending strength and fresh concrete tests were performed. And compared with the reference mixture and according to the analysis of the results. The results showed an improvement in bending strength .It was found through the flexural examination that the flexural strength of the mixture containing fiber percentage (7%) achieved the highest strength compared to the rest of the ratios used, compared with the reference mixture (Ref.) by (32.25, 27.5)% for ages (28, 56), respectively.
ABSTRACT A study of the effect of cutback MC-60 on the permeability and compressibility characteristics of sandy gypseous soil is presented. Series of laboratory tests are carried out including classification, compaction, and conventional oedometer tests as well as a new test named compressibility- permeability leaching test. Test results shows that the superlative enhancement in compressibility and permeability and thereby in collapsibility occurred with 7% additive.
The concept of sustainability was developed in the last years and included the construction industry to solve the issues that pertaining by high consumption of natural sources, environmental pollution and high amount production of solid wastes. On the other hand, the plastics generation is growing exponentially every year, especially, types of Polyethylene Terephthalate (PET) that are used to produce soft drinks bottles, this study attempts to apply the concept of sustainability and reduce the environmental pollution by cutting the plastic bottles (PET) as small fibers added to the ordinary concrete to improve the shear and tensile strength of reinforced concrete beams. For this purpose, the experimental work was carried out to study the effect of waste plastic fibers (PET) on the shear behavior of seven reinforced concrete beams with dimensions of (100×150×1200) mm that were designed to fail in shear, the fibers percentages that were used in this study are (0.25, 0.5, 0.75, 1, 1.25 and 1.5%). Also, the influence of Polyethylene Terephthalate (PET) fibers on the mechanical properties of concrete was studied such as: workability, compressive strength, splitting tensile strength, static modulus of elasticity and ultrasonic pulse velocity.
This study investigates the strength performance and microstructural changes of a sandy gypseous soil improved with fly ash-based geopolymer, for shallow and deep applications. Different proportions of geopolymer were added to a natural gypseous soil having a gypsum content of 30% to 40% with different water contents. The fly ash was activated using sodium hydroxide with molar concentrations 8 and 12 molar and sodium silicate. The ratios of the fly ash to the activator were 1 and 2. Specimens were cured for different ages at 30°C. To simulate the field conditions, a number of specimens were immersed in a salt-saturated solution. Materials performance was evaluated at the macro level by performing unconfined compression test and at micro level by performing scanning electron microscopy test. The study showed that an increase in the molar concentration of sodium hydroxide and of the binder ratio improved material’s strength particularly at lower water contents of the soil. Increasing the binder content to about 30% improved the strength by enhancing the bonding between the soil particles. On the other hand, immersing the samples in the salt solution led, in most cases, to breakdown of the geopolymer network, as confirmed by the SEM images. It was concluded that the fly ash geopolymer-soil mixtures under investigation can provide as high as 8 MPa uniaxial strength under no sulfate attack. However, under sulfate attack condition, this strength can decrease to as low as 0.5 MPa. Even under the worst case, the later strength can be just enough to support shallow foundations rested on a saturated gypseous soil.
The geometric design of highway alignment consists mainly of the design of horizontal alignment and Vertical alignment. The more important step in horizontal alignment design is the curve radius determination. The equation used for horizontal curve radius determination is developed with assumption that when vehicle run on curved section, there are an acting force on it. This force include the centrifugal force that try to push vehicle out off its path , on the other hand there are resisting forces try to keep the vehicle on its path. Those include the friction between road surface and tires and forces resulting from sloping the highway cross section. When a vehicle on rural highway with high embankment the wind Pressure will play an important role in force system acting on vehicle because of increasing in wind pressure intensity at these conditions (rural highway, i.e open areas, high embankment). The purpose of this paper is to present a new equation for horizontal curve radius determination taking in to account the wind force effect in addition to other forces acting on vehicle The resulting equation relates vehicle length, height and weight and the wind pressure as well as the other factors in traditional equation. Effect of each parameter on design radius was investigated for the case where the wind direction is acted with the same centrifugal force direction. It has been found that the required minimum radius increase with the decreasing of vehicle weight or in the other words the vehicle permitted speed decrease with the decreasing of vehicle weight. On the other hand, the required curve radius increases with vehicle height increasing. Consequently, permitted height of bags loaded on a truck is related to the type of loads. Derived equation can also be used for estimation of the permitted truck speed on existing roads especially in case of bad weathers The comparison between the traditional and suggested equation showed that maximum difference is about 160 % which results at high wind pressure while the difference is up to 20 % for low wind pressure
This study is conducted to investigate the strength and stiffness of clayey soil stabilized with fly ash-based geopolymer for unpaved roads. Two sodium hydroxide concentrations of 6 and 8M and two alkali solution ratios of NaOH:Na2SiO3= 1 and 1.5 were considered. Other factors such as fly ash replacement ratio (by mass), curing period, and curing temperature were held constant at 15%, 48 hours, and 65 C, respectively. The unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed to evaluate the mixtures. Outcomes of this study revealed that the strength of the clayey soil could be increased by up to 94%. Additionally, increasing sodium silicate content in the alkali solution increased the solution's activity and yielded higher strength and stiffness. This study confirms the effectiveness of the geopolymer binder for the improvement of soil strength and stiffness.
Organic soils are problematic soil for various engineering applications due to their high compressibility and low shear strength which need to be improved. For many soil improvement techniques, using waste materials, such as fly ash (FA), is a practical and sustainable process. In this research, FA and geopolymer were used e used to reduce organic soil's compressibility. A one-dimensional consolidation test was performed to evaluate the organic soil's consolidation and compressibility properties. The geopolymer was prepared using 20% FA and of sodium hydroxide ratio and sodium silicate alkali solutions. The geopolymer specimens were first cured for 2 hours at 45 and 65 oC, then cured for further 28 days at room temperature. The consolidation test results showed that FA-based geopolymer is effective in stabilizing organic soils due to the observed improvement in the compressibility, consolidation, and permeability characteristics. The compression index decreased by 98.16%, and the permeability decreased by 95%.
The problem of solid waste is being emerged increasingly due to the increased quantity of solid waste as a result of population’s increase .From the point of view of environmental and energy concerns, it is preferable to reuse the organic and inorganic components of solid waste in order to minimize the cost. In this investigation, the possibility of using solid waste ash (SWA) as a partial replacement of cement and its effect on the mechanical properties of concrete was studied. Samples of municipal solid wastes were collected were burring and changed to ash. A total of 50 cubes, 15 small cubes, and 30 cylinders, as well as 5 prisms were prepared .Various properties of solid waste ash are added to the cement mistures with percent's of 5, 10, 15 and 20 percent by weight of solid waste ash. A concrete mix with a percent solid waste ash was used as reference. Pozzolanic activities of all mortars, and setting times of all pastes, and workability of all mixes were investigated .Compressive strength, splitting tensile strength, absorption, and drying shrinkage for reference for reference and solid waste concrete specimens were investigated at various ages. Results demonstrate that the pozzolanic activity was within ASTM requirements for the cases of 5% and 10% ash replacement. For 15 and 20 percent replacement this activity was only slightly less than the ASTM value. The 90-day compressive strength rose, in comparison with control specimens, with 5 percent replacement and was only slightly lower at 10 percent replacement. In splitting tensile strength was at least equal to reference specimens for all replacement ratios. The rise in these values, over the reference specimens, ranged between 0 to 21 percent for the case of 20 and 5 percent replacement, respectively.
Collapse of gypseous soils may cause excessive settlement and serious damage to engineering structures. Various improvement approaches, such as mechanical techniques and chemical additions, have been used to reduce the collapsibility of these soils. The odometer test has traditionally been used to assess the collapsibility of the improved gypseous soils; however, because the small size of test specimens, this method may not adequately reflect field conditions. In this research, a laboratory model test of 600 x 600 x 600 mm with a model footing of 100 x 100 mm was developed to measure the collapse characteristics of a gypseous soil. The top layer underneath the footing was improved by compaction, cement kiln dust (CKD), geogrid, and a combination between CKD and geogrid. The top layer was improved at two values of thickness of 50 and 100 mm. The results obtained from this study indicate that the values collapsibility settlement reduction factor for compacted soil and the soil treated with CKD were 75 and 82%, 89% receptively. These values increased up to 95 % when a combination of CKD and geogrid was applied. As discussed herein, the aforementioned treatment methods can effectively be used to improve the collapsibility of gypseous soils.
Abstract The purpose of highway geometric design is to provide safe and economical highways. One of the utmost important geometric design element for safely travel that should be satisfied is visibility on designed road. This can achieved by providing adequate sight distance in both horizontal and vertical alignments. Minimum sight distance that should be provided at all points along highway is stopping sight distance SSD. In the design of vertical curves AASHTO's Geometric design Policy uses the sight distance requirement as a major criterion in curve length determination. Moreover, sight distance has great effect on highway constructional cost because more required sight distance means more vertical curve length, which in turn means more earthwork materials. Consequently, safety and economics can be considered as a major criterion in design of highways. The AASHTO's model involved design speed, perception-reaction time, and frication factor as a parameters used for SSD computations on level sections. On inclined surfaces, an additional parameter denoted by (G), which reflect grade of sloped surface on SSD. In the present paper a new approximate methodology and Equations are formulated though which a suitable design grade value can be estimated on vertical curves where the grade not constant then utilizing this value to compute SSD on these curves and hence compute vertical curve length corrected for grade effect. Generalization of present methodology is carried out by derivation a general mathematical solution. From these derivations it has been found that the suitable grade value for Type I and Type III (initial and final grade are descending and ascending) is half of the largest grade among G1 and G2. While the design grade value is the average value of G1 and G2 for Type II and Type IV (both grade are descending or ascending). Comparison with other grade estimation on vertical curves suggestions showed that the present methodology produces more reasonable and economical value because the obtained length is no longer to be uneconomical as compared with other suggestions. At the same time it provides a safe value used in all design cases those reflects the actual case as compared with other suggestions those ignored or reduced the effect of grade.
This research aims to study sediment discharges in Al Anbar Thermal Power Station in two phases the first phases include a follow-up study sediment load from the river by taking samples at different depths and different discharges, and noted measurements, calculations for each section while the second phases included an account of the tonnage of river sediment through the program depends on the equation of Meyer, to five sections (18, 26, 35.43, 45) with the observation results and do a comparison between the two phases. Research has included also employ technology of remote sensing and geographic information system GIS in the study of the waters of the Euphrates at thermal power plant after an analytical study was taken amount sediment and size in the study area and then link results with the geographic information system GIS for the purpose of producing layers represent the nature of the spatial distribution of these Sediments on the entire study area and the aerial imagery of software Google Earth with the use of the program (Arc view), one of the geographic information system software. The research concluded give recommendations for controlling the movement of sediment when the at Al Anbar Thermal Power Station Outlet through two main axes of them increase the flow velocity exceeds the critical velocity and the other includes the disposal of sediments away from the site of the station outlet.
The aim of this study is to investigate the effect of adding recycled materials such as CKD and RAP to weak cohesive soils, in addition to evaluate the change in the strength of these soils. This study was conducted on soil type MH, and only RAP particles finer than 10 mm were used in preparing the mixtures. 7, 14, and 28 days were selected as curing periods for soil- CKD and soil- CKD- RAP mixtures to obtain the effect of curing periods on soil improvement. The results showed that adding 20% of CKD to the natural soil increased the unconfined compression strength UCS from 0.43 MPa to 2.6 MPa at a 28-day curing period. Also, the results showed that adding 25% of RAP to the soil- 20% CKD mixture increased the UCS value to 5.3 MPa after 28 days of the curing period. The final results showed that the optimum contents of CKD and RAP added to the cohesive soil were 20% and 25%, respectively, while the optimum curing period was 28 days
This research includes studying the possibility of producing a new kind of No-fines concrete by replacing granules of coarse aggregates with grains results from the fragmentation of industrial waste of polystyrene. This replacing were with different volumetric proportions of coarse aggregate, and theses volumetric ratios were equal to (5%, 10%, 15% and 25%). Waste plastic fibers (WPFs) resulting from cutting of soft drinks bottles were added for strengthening this new kind of concrete. Mixing ratio was equal to (1:5) (cement: coarse aggregate) by weight. One reference mix was produced for comparative purpose. Compressive strength, flexural strength and density tests were conducted, it was examined three samples of each examination and taking the average. Compressive strength values of the new sustainable concrete were ranged from 10 MPa to 12.4 MPa at age of test equal to 28 days, while the average value of the density of this concrete at the same age reaches 1930 kg/m3. This average value of modulus of rupture was equal to 2.36 MPa at 28-day age test.
The accumulation of wastes, especially plastic and car tires, has become a major problem facing society today. Therefore, through this research, these wastes were recycled and used to improve some properties of concrete. Recycled crumb rubber from car tires was used instead of sand as a partial replacement of 10%. The substitution was done by two methods: random and equivalent size substitution. As well, 1%polyethylene terephthalate (PET) fiber was added by the volume of concrete to improve some properties of rubberized concrete. Compressive strength, ultrasonic pulse velocity test (UPV) were conducted in this study to investigate the efficiency of PET rubberized concrete, as well the impact resistance test was also conducted to investigated the ability of PET rubberized concrete in term of energy absorption. Slabs of size (50cm×50cm×5cm) were utilized for low velocity impact test. The results indicated there were a reduction in compressive strength and UPV results were observed in PET fiber rubberized concrete the reduction were (37.47% and 5.4%) respectively as compared with PETC mixture and the result of dynamic modulus of elasticity show the same pattern of UPV result , in contrast there was an improvement in the impact resistance when PET fiber and crumb rubber were used it increased by(117.63% and 52.9% ) for random and equivalent replacement respectively as compared with PETC.
A BSTRACT: Leaching effects on permeability and compressibility characteristics of undisturbed sandy gypseous soil were investigated in this study. Time, stress level, strain, leachate condition and flow velocity were considered. The loading, leaching and permeability measurements were carried out utilizing the constant head pereameter with special modifications. Test results show that salt leaching and thereby leaching strain is a time dependent process. Also as leaching strain continued coefficient of permeability decreases.
The spillway is an important structure in the dams, used to pass the flood wave to the downstream safely. In the past decades, Computational fluid dynamics (CFD) has evolved. Research findings have shown the CFD models are a great alternative for laboratory models. According to it, the flow pattern over ogee spillways can be studied in a short time and without paying high expenses. Because the flow over the ogee spillway is turbulent and has a free surface, its properties are complex and often difficult to predict. Therefore, the present paper focuses on the study of turbulence closure models including the standard k-ε, RNG k–ε, k–ω, also, the large-eddy simulation (LES) models, to assess their performance to simulate flow over the spillway. The Flow-3d software with the volume-of-fluid (VOF) algorithm is applied to obtain the free surface for each turbulence model. The results of the analysis show that the LES model yielded better results when compared with laboratory results, while the turbulence closure models result of Reynold average Navier Stocks equations (RANS) was more stable, especially standard k-ɛ and RNG models.
This paper presents a new and improved design procedure in shear for reinforced concrete normal members without shear reinforcement (stirrups) using the techniques of dimensional analysis and multiple regression analysis. A total of 334 data sets have been obtained from existing sources of reinforced concrete shear test results covering a wide range of beam properties and test methods. The proposed equation is applied to existing test data for these reinforced concrete normal beams (shear span to depth ratio (a/d) greater than or equals to 2.0) and the results are compared with those predicated by ACI and BS codes. It can be also noted that the test results are in better agreement with the proposed cracking shear strength equation because of the excellent correlation between experimental results and theoretical values.
Scour around bridge piers is a well-known threat to bridge stability worldwide. It can cause losses in lives and the economy, especially during floods. Therefore, an artificial intelligence approach called artificial neural network (ANN) was used to predict the scour depth around bridge piers. The ANN model was trained with laboratory data, including pier width, flow velocity, particle diameter, sediment critical velocity, flow depth, and scour depth. The data was divided into 70% for training, 15 for validation, and 15% for testing. Besides, the ANN model was trained using various training algrthins and a single hidden layer with 20 neurons in the hidden layer. The results showed that the ANN model with Bayesian regularization backpropagation training algorithm provides a better predicted scour depth with a correlation coefficient (R) equal to 0. 9692 and 0.926 for training and test stages, respectively. Besides, it showed a low mean squared error (MSE), which was 0.0034 for training and 0.0066 for the test. These results were slightly better than the ANN with Levenberg-Marquardt backpropagation with R training equals 0.9552 (MSE training = 0.0047), and R test equals 0.838 (MSE test = 0.007).On the other hand, the ANN model with a scaled conjugate gradient backpropagation training algorithm showed worse predictions (R training = 0.7407 and R test = 0.6409). Besides, the ANN model shows better outcomes than the linear regression model. Finally, the sensitivity analysis has shown that the pier width is the most crucial parameter for estimating scour depth using the ANN model.
This study addressed some important tests for concrete including thermal, acoustic insulation and some mechanical behaviour of concrete containing granular Polyvinyl Chloride (PVC) waste as a sand replacement. The PVC waste was collected from a plant of manufacturing PVC doors and windows, was used to replace some of fine aggregate at ratios of 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight Properties that studied are thermal conductivity, acoustic insulation slump, fresh density, dry density, compressive strength, flexural strength, and splitting tensile strength. Curing ages of 7, 28, and 56 days for the concrete mixtures were applied in this work. From the results of this study, it is suggested that using of 12.5% fine PVC as a sand replacement by weight can improve thermal insulation to about 82.48% more than concrete without plastic waste Acoustic insulation is about 43.09% more than reference mix and it satisfies the requirement of ACI 213R 2014 for structural lightweight concrete.