Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for Ali M. Farhan .

Article
SHEAR STRENGTH OF PORCELINITE AGGREGATE REINFORED CONCRETE BEAMS

Ali Farhan Hadeed, Kahlil I. Aziz, Ayad A. Slaby

Pages: 25-46

PDF Full Text
Abstract

Research in Iraq has expanded in the field of material technology involving the properties of the light-weight concrete using natural aggregate. Research work on porcelinite concrete has been carried out in several Iraqi Universities. However , despite the great practical importance of such concrete in construction fields ,very limited amount of work has been carried out to investigate the (shear strength) of structural light-weight aggregate concrete , therefore it is important to study the properties and their structural behavior. In this work an attempt is made to study shear strength of porcelinite reinforced concrete beams without (stirrups). The results have been compared with the results predicted by the equations of International codes, such as ACI 318M-02, BS-8110 codes and with some authors' equations as for, Hanson. The experimental results also have been compared with results obtained from normal weight concrete specimens that had been prepared for this purpose. The study mainly deals with the structural behavior of porcelinite reinforced concrete beams without stirrups, especially the shear strength, besides, the short-term deflection, strain and cracks. The variables are, compressive strength ranging between (23.0-29.8) MPa and reinforcement percentages ranging between (0.0174-0.0307). A total of 12 beams are tested; (9) are light weight concrete beams without stirrups and (3) are normal weight concrete beams, also without stirrups. The dimensions of all those beams are 135 * 260 * 1800 mm. The structural results more often, give values 2.9 times more than that of (ACI-02)

Article
Mechanical Properties of Porcelinite Reinforced Concrete Beams

Ayad A. Slaby, Khalil I. Aziz, Ali Farhan Hadeed

Pages: 1-24

PDF Full Text
Abstract

The researches in Iraq has expanded in the field of material technology involving the properties of the light weight concrete using natural aggregate aviable in westran of Iraq. Researches work on porcelinite concrete has been carried out in several Iraqi Universities. The study is deals with mechanical properties of porcelinite aggregate concrete by casting (273) different specimens. These properties are, compressive strength, flexurale strength, splitting strength, static modulus of elasticity and absorption. The results indicated that the structural light weight aggregate concrete produced from local porcelinite aggregate is suitable to used as a structural concrete, it can produce structural light weight concrete of compressive strength varies from (23.0 to 29.8) MPa with the density ranges from (1745 to 1855) kg/m3, by using cement content about (550 and 650) kg/m3.Such concrete exhibited good mechanical properties. It gave the values of splitting tensile strength, modulus of rupture and modulus of elasticity, 75%, 90% and 60% from those of normal weight concrete respectively owning the same compressive strength and meeting the requirement of ACI-213

Article
Experimental and Finite Element Modeling of Self Compacted Reinforced Concrete Beams Strengthened by Bottom Steel Plates

Zaydon M. Ali, Jamal A. Farhan

Pages: 1-18

PDF Full Text
Abstract

In this study, eight rectangular reinforced concrete beams strengthened by bottom steel plates firmly interconnected to them by headed-stud shear connectors are manufactured using self compacting concrete and tested up to failure under two point loads to demonstrate the effect of steel-plate thicknesses, lengths, and the shear-connector distributions on the behavior, ductility and strength of this type of beams. A trial mix conforming to the EFNARC Constraints had been successfully carried out to satisfy the three fresh tests of SCC, these tests are flowability, passing ability and segregation resistance. The results show that there is a substantial improvement in the flexural resistance, increasing the flexural stiffness and decreasing the ductility ratio due to thickening steel plate, On contrary, increasing the spacing between shear connectors to 50% had slight effect on the flexural resistance, but subsequent increase of their spacing to 100% had seriously lowered that resistance, The spacing between shear connectors has a primary effect on the average flexural stiffness and ductility ratio. In regard to the steel plate length, its shortening has reduced the flexural resistance significantly, decreased the average flexural stiffness and had increased the ductility ratio. The experimentally determined ultimate flexural strength had been compared with its corresponding one computed by the "Strength Method" using ACI requirements where high agreement gained between them due to the nearly perfect interaction provided by SCC. The eight composite beams had also been analyzed by the non-linear three dimensional Finite Element Analysis employing ANSYS program (release 12.1),where high agreement is achieved compared with experimental results.

Article
Estimation of the Surface Runoff Volume of Al-Mohammedi Valley for Long-Term period using SWAT Model

Ali M. Farhan ., Dr. Hayder A. Al Thamiry .

Pages: 7-12

PDF Full Text
Abstract

The management of water resources requires adequate information on the quantities of water supplied from the basins that outfall into a river, especially during the flood seasons. The study area located in the western part of Iraq within the administrative boundaries of the Heet district about 70 km from Haditha Dam, 45km from Ramadi in Anbar province. The study aims to evaluate the amount of surface runoff through a long-term period (1981-2019). Soil and Water Assessment Tool (SWAT) related to Geographic Information System (ArcGIS) was used for the simulation. The input data was the Digital Elevation Model (DEM) of SRTM with resolution 30m, land use/land cover map from the European Space Agency (ESA) with resolution 300m and, soil map from the Food and Agriculture Organization (FAO). The weather data used in the study were obtained from the Climate Forecast System Reanalysis (CFSR) combined with the weather data from the Surface meteorology and Solar Energy (SSE) produced by NASA. These weather data prepared using SWAT weather database software to be ready for the simulation processes. Al-Mohammedi valley was calibrated and validated using SWAT-CUP software using the available recorded discharges at Heet, Ramadi, and Al-Warar gauge stations. The calibration is based on the meteorological data for the period January 1, 2002, to December 31, 2006, and the validation was based on the data between January 1, 2007, to December 31, 2009. The model calibration and validation results based on two objective functions “Nash-Sutcliffe (NS) and coefficient of determination(R2)” showed that SWAT was successfully simulated Al-Mohammedi valley with NS = 0.72 and R2 = 0.76 for calibration, and NS = 0.63 and R2 = 0.65 for validation. According to SWAT results, the average runoff volume in the long-term period of simulation from January 1, 1981, to October 31, 2019, was 79.2 million m3 while the average runoff depth was 18.25 mm with about 17 % of rainfall becomes surface runoff.    

Article
Flexural Behavior of Slurry Infiltrated Waste Plastic Fiber Concrete

Dheyaa Ali, Abdulkader Al-Hadithi, Ahmed Farhan

Pages: 42-51

PDF Full Text
Abstract

Slurry infiltrated fiber concrete (SIFCON) is a relatively new high performance material and can be considered a special type of fiber concrete (FRC) with high fiber content. The matrix consists of a flowing mortar or cement slurry that must penetrate well through the network of fibers placed in the mold. SIFCON has excellent mechanical properties combined with high ductility and toughness values. SIFCON a relatively new material, is composed of mud (cement or cement and sand), water, a plasticizer (water reducer), and fibers. All previous studies have used waste steel fibers, steel fibers and other fibers, but in this study, plastic fibers were made from polyethylene terephthalate (PET) by cutting carbonated beverage bottles. The main objectives of this study are: Determination the effect of the waste plastic fiber volume ratio on the strength and deformation of (SIFCON) samples under the influence of bending loads. Both flexural strength and toughness properties were determined by testing samples (100×100×400) mm at 28 and 56 days of age. The results obtained from these tests were compared with those performed on conventional tests. Aspect Ratio equal to (36.8) and three volume ratios (3%, 5% and 7%) of the total volume of the concrete mixture were used to add fibers with different volume ratios. A conventional concrete mix was created as a reference for comparison. Bending strength and fresh concrete tests were performed. And compared with the reference mixture and according to the analysis of the results. The results showed an improvement in bending strength .It was found through the flexural examination that the flexural strength of the mixture containing fiber percentage (7%) achieved the highest strength compared to the rest of the ratios used, compared with the reference mixture (Ref.) by (32.25, 27.5)% for ages (28, 56), respectively.

1 - 5 of 5 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.