A voided slab is an innovative type of reinforced concrete slab system developed recently, that has proven its excellence in terms of its structural, environmental, and economic benefits. The self-weight of a slab can be considerably reduced using different shapes of void formers like spherical, cubical, and donut. All researchers confirm that the self-weight of the slab decreases by up to 40%. Various researchers have carried out experimental and numerical studies for studying one-way flexural strength and punching shear strength of voided reinforced concrete slabs. However, the one-way or two-way flexural strength of the voided slab still needs to be acutely investigated. This paper deals with the survey on many titles of selected high impacted journals to illustrated almost criteria of investigations of these types of slabs. The main outcomes of this paper are the term environmental protection, sustainable and plastic waste reduction had a role not a little in this research, as 16% of the research on this topic were studied. Also, the plastic material governs the subject of the raw materials used to make the voids;43% of researches used this material.
The influence of concrete mixing water quality on the compressive strength of concretes was investigated in this study. During the study, the compressive strength (CS) of the concretes was determined at 7, 14, and 28 days age. This study used 8 types of water of varying qualities as concrete mixing water (water with 71 UTN impurity level, water with 250 UTN impurity level, water with 1000 UTN impurity level, well-sourced water, acidified water, and alkaline water). Potable water was used as reference water. The results indicated that the lowest CS has been obtained by using alkaline water at a concrete age of 7 days while the usage of water with 250 UTN impurity level as a concrete mixing water yielded the highest CS. in addition, the lowest CS has been obtained when using a mixing water of alkaline at a concrete age of 14 days while the highest CS resulted from using water with 71 and 250 UTN impurities levels. Furthermore, the usage of water with 71 UTN impurities level and an acidic water as a concrete water mixing gave the lowest CS at twenty eight days concrete age, while using magnetic water and water with 250 UTN impurities as concrete mixing water resulted in the highest CS. The use of water with 250 UTN impurities as concrete mixing water favored CS development at all concrete ages. These obtained results have shown a various effects of different impurities which significantly indicate that only a few water impurities affect the concrete’s CS seriously..
nan