Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for Jumaa Al-Somaydaii

Article
Application of Evapotranspiration Models for Al-Ramadi Irrigation Project, Al-Anbar, Iraq

mohammed waheeb, ayad Mustafa, Jumaa Al-Somaydaii

Pages: 60-68

PDF Full Text
Abstract

Since evapotranspiration typically makes up the largest portion of the terrestrial water cycle, it is one of the most crucial factors in determining how much water is available. This study evaluated four models (Penman-FAO-24(PF), Penman-Monteith -FAO-56(PM), Penman-Kimberly(PK), and Jensen-Haise (JH)) utilized frequently to calculate monthly reference crop evapotranspiration (ET_0) values for Ramadi irrigation project (fourth stage). The statistical indicators considered were the root mean square error (RMSE), Mean Absolute Error (MAE), Relative Error (RE), Correlation Coefficient (R^2) and mean bias error (MBE), models were used to estimate evapotranspiration, and by calculating evapotranspiration for Al-Ramadi city according to the climate data available to us, The (PF) model had the lowest MBE = 0.02945, greatest RMSE = 29.369, and highest R = 0.9641 values among the four models, demonstrating that it is the best. The JH model, which achieved the highest values of MBE = 0.00978 and RSME = 58.509, was the least accurate of the models.. The study's conclusions may be useful to farmers, decision-makers, and local water organizations in assessing irrigation water requirements, planning, and effective use of water resources.

Article
Using logistic and Multilinear Regression Technique for Modeling Productivity finish work Construction in Ramadi City

Jumaa Al-Somaydaii

Pages: 64-70

PDF Full Text
Abstract

An essential part of managing construction projects is productivity estimation. The accuracy of the construction productivity estimate determines the management quality. This research established a multi-variable linear regression and another mathematical model for the same variables to assess the productivity of building projects using the logistic regression approach. Data from residential, commercial, and educational projects in various regions of Anbar was utilized in the research. Numerous dependent variables were chosen with care. These independent factors, which include age, experience, the quantity of work, level of execution, and security circumstances, may be divided into objective and subjective variables. The person-hour/unit and the cost/unit are two inputs to the system that are used to measure input/output, the parameter known as productivity. The first is used for procedures that need a large amount of labour and is focused only on labour. All impacts are combined in the second cost/unit. The researcher came up with an equation that contains the following factors  (Health condition, equipment available, Security, labor, Quality work, morale, the material available, site condition, Experience, Weather, Height, and Age ).

Article
Assessment of Groundwater Quality at Selected Location of three Wells and Al-Warrar Canal, Ramadi City, Iraq.

Reaam Abood, Ayad Mustafa, Jumaa Al Somaydaii

Pages: 1-7

PDF Full Text
Abstract

To classification groundwater quality in the study area, three wells were drilled at a depth of 10m and selected two locations across Al Warrar Canal to represent their water quality. Water samples were collected from these wells and the Warrar Canal to examine water quality. Then results were compared against the World Health Organization (WHO) limits to study the Index of Water Quality (WQI). WQI was calculated according to the Canadian Council of Ministers of the Environment (CCME), and the quality of water was evaluated for domestic and irrigation uses. The samples were tested for electrical conductivity, pH, temperature, total dissolved solids, chloride, total hardness, nitrate, and alkalinity according to the standard methods. The results of laboratory analysis showed significant differences among the wells and Warrar Canal water quality in the measured parameters according to WHO limits. Due to many human activities like urbanization, agrarian overflow, drainage of untreated sewage, and industrialization, high values of trace elements and heavy metals were recorded in wells three. For agriculture purposes, the results show that the water in the three wells is very high salinity, where the Warrar Canal is high salinity, and Canal water causes saline and alkali damages. It was recommended that the WQI in three wells was poor water quality whereas, marginal water quality was pointed in AL Warrar Canal.    

Article
Statistical Evaluation of Value Engineering Criteria's in Sustainable Building Projects

Faiq M. S. AL-Zwainy, Jumaa Awad AL-Somaydaii

Pages: 1-14

PDF Full Text
Abstract

Sustainable buildings reflect the interest rising of Urbanism sectors in issues of economic development, optimal utilization of natural resources and greater reliance on "renewable" sources of energy. The objective of the research is to identify and Diagnosis the priority of alternatives to sustainable projects with the of relative importance and to review the value engineering indicators in building and the possibility of applying sustainable building standards such as British Standards (BREEAM), US Standards (LEED), Pearl Rating System and Green Pyramid Assessment System. The research is based on four axes. The first axis is the foundations of architectural design to serve the optimum use of the available resources. The second axis is based on the methods of producing building materials with optimum use of natural resources; Third axis: The sustainable use of the building to achieve conservation of the environment using economical sources of energy, waste recycling and maintenance of the building according to the required specifications. The fourth axis, which means Using renewable energies to provide the building with the energy it needs. The literature and researches in the field of research work were reviewed, which included the concept of applying value engineering method in the sustainable buildings and the most important areas of their applications during the stages of completion of the project and what are the basic considerations that should be provided in the construction projects, Which represents the practical aspect in relation to the various stages of the field study, which includes aspects related to the field survey, through the preparation and Configure of questionnaires derived from the theoretical study and interviews and also focused on the indicators and areas of applications during the stages of the project (pre-construction stage, implementation stage, A maintenance and operation, post-construction phase (end of the age of the building) and what are the basic considerations that must be provided in the construction projects. The research provided this results: The Sustainable Buildings Projects location Selection Index is The most important indicators of value engineering for sustainable buildings where relative importance of it is 72%, according to the respondents' answers, conversely the architectural index, with its relative importance of 55%, while the electromechanical index was 68% and the constructional index by 65%. And the development of a waste management program during the process of construction and operation so that this program achieves the minimum recycling and the use of new alternatives to building materials drawing on what has been developed within other areas in the development of the construction industry.

1 - 4 of 4 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.