Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for Saman Ebrahimi

Article
Machine Learning Model for Estimation of Local Scour Depth around Cylindrical Bridge Piers

Ahmed Ali, Muhammad Ashiq, Saman Ebrahimi, M.SOBHI AL ASTA, Mahdis Khorram

Pages: 1-13

PDF Full Text
Abstract

Scour around bridge piers is a well-known threat to bridge stability worldwide. It can cause losses in lives and the economy, especially during floods. Therefore, an artificial intelligence approach called artificial neural network (ANN) was used to predict the scour depth around bridge piers. The ANN model was trained with laboratory data, including pier width, flow velocity, particle diameter, sediment critical velocity, flow depth, and scour depth. The data was divided into 70% for training, 15 for validation, and 15% for testing. Besides, the ANN model was trained using various training algrthins and a single hidden layer with 20 neurons in the hidden layer. The results showed that the ANN model with Bayesian regularization backpropagation training algorithm provides a better predicted scour depth with a correlation coefficient (R) equal to 0. 9692 and 0.926 for training and test stages, respectively. Besides, it showed a low mean squared error (MSE), which was 0.0034 for training and 0.0066 for the test. These results were slightly better than the ANN with Levenberg-Marquardt backpropagation with  R training equals 0.9552 (MSE training = 0.0047), and R test equals 0.838 (MSE test = 0.007).On the other hand, the ANN model with a scaled conjugate gradient backpropagation training algorithm showed worse predictions (R training = 0.7407  and R test = 0.6409). Besides, the ANN model shows better outcomes than the linear regression model. Finally, the sensitivity analysis has shown that the pier width is the most crucial parameter for estimating scour depth using the ANN model.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.