Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for ansys

Article
Analysis of flexural behavior of one-way reinforced concrete slab casted by shotcrete contain various types of plastic fibers

Abdulfatah Jawhar, Yousif Mansoor, Abdulkader Al-Hadithi

Pages: 118-128

PDF Full Text
Abstract

The design of reinforced concrete structures has traditionally relied on empirical techniques based on experience or experimental research on actual structural members. Although this approach produces a high level of precision, it is usually exceedingly costly and time-consuming. This paper studied the convergence between theoretical analysis (ACI 318-19 Equations) and numerical analysis (FEM) of eleven one way reinforced concrete slab specimens casted by shotcrete contains three types of plastic fibers including waste plastic (PET), polypropylene (PP), and hybrid (PET+PP) fibers with three addition ratios (0.35%, 0.7%, and 1%) for each type. The results concluded that the numerical analysis (ANSYS FE model) showed a good agreement with the theoretical (ACI 318-19) of one-way slab in terms of ultimate load, with a variance, and standard deviation equal to 0.00076, and 0.027 respectively. Hence, ANSYS v15 software can be used for the analysis of reinforced concrete slabs casted by shotcrete contain waste plastic fibers and polypropylene fibers.

Article
Nonlinear Three-Dimensional Finite Element Analysis of Reinforced Concrete Dapped-End Beams

A. Mohammed

Pages: 1-16

PDF Full Text
Abstract

This paper deals with the nonlinear finite element analysis of two shear-critical concrete dapped-end beams. Reinforced concrete dapped-end beams having nominal shear span to depth ratio values of 0.56 and 0.59, concrete strength 32MPa and 34MPa, and reinforcement ratio via yield strength 2.83MPa and 7.39MPa, that failed in shear have been analyzed using the ‘ANSYS’ program. The ‘ANSYS’ model accounts for the nonlinearity, such as, post cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of concrete. The concrete is modeled using ‘SOLID65’- eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The internal reinforcements have been modeled discretely using ‘LINK8’ – 3D spar element. A parametric study is also made to explain the effects of variation of some main parameters such as shear span to depth ratio, concrete compressive strength, and the parameter of main dapped-end reinforcement on the behavior of the beams. From the present modality the capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in reinforced concrete dapped-end beams have been illustrated. The parametric study shows that the beams shear strength is affected by the shear span to depth ratio, concrete compressive strength and the amount of main reinforcement.

Article
Finite element Analysis of Large Span Continuous Two-Way Ribbed Slabs with Some Parametric Studies

Ayad Abdulhameed Sulaibi ., Dhifaf Natiq H. Al-Amiery .

Pages: 47-68

PDF Full Text
Abstract

This paper investigates the results of finite element analysis for three proposed full-scale two-way slabs. The aim of this study is to use finite element method (FEM) by using ANSYS-v15 program to analyze the proposed slabs and study the flexural behavior , especially load-deflection relationship and ultimate strength. Some parametric studies on these works are also done to cover the effect of some important parameters on the ultimate load capacity and deflection. Proposed slabs are divided into three groups with different dimensions to study the effect of using continuous large spans on the structural behavior of two-way ribbed (waffle) slabs as compared to solid slabs. In all three groups, each slab consists of three by three panels supported by concrete columns at corners. For the first group, when the void ratio (the ratio of volume of voids between ribs to total volume of ribbed slab) increases, the stiffness of waffle slab also increases. Increasing stiffness for waffle slab is continued up to some limit, and then will decrease with increasing void ratio. The best case in this example occurs when the void ratio equal to (0.667) which gives increase in stiffness of (0.347) as compared to solid slab with the same thickness. The results of ANSYS analysis shows that the best percentage of increase in deflection is (51%) with decreasing in concrete volume of (59%) for long to short span ratio of (1.5) and (300)mm thickness. For the third group of proposed models, the stiffness of two-way ribbed (waffle) slab is higher than the solid slab which has the same volume of concrete. The displacement of two-way ribbed (waffle) slab in the elastic range (at first crack ) is lower than the solid slab. In this manner, it will give the maximum reduction in concrete weight with higher thickness.    

Article
Time-dependent Analysis of FRP Reinforced Two – way Slabs subject to high level stresses.

Lina Ali, Akram Mahmoud

Pages: 52-69

PDF Full Text
Abstract

The present study, the effect of changes that developed in concrete structures with time is presented. Two way slab investigated experimentally by [1]was analyzed using finite element method by ANSYS commercial program. Many parameters studied such as length to thickness ratio, reinforcement ratio and ultimate load ratio. The slab with dimension (2360*2360*63) mm and reinforced with different types of materials such as steel bars ,GFRP and CFRP (fiber reinforced polymer) bars . The results show that the strain increase gradually with time after apply the load. It can see that the strain in steel model increase with ratio of 19.98% when the load increase from 75% to 90%,and decrease with ratio 50% when the load decrease from 75% to 50% .That is, the change by increasing the strain is less and slower than the change by decreasing the strain, since the strain when dropping the load is less than the strain when lifting the load, because the structure has not undergone and its stiffness is still high and it is trying to recover its original shape. It increases significantly at the beginning, and then the difference decreases or stabilizes approximately after 330 days.

Article
Experimental and Finite Element Modeling of Self Compacted Reinforced Concrete Beams Strengthened by Bottom Steel Plates

Zaydon M. Ali, Jamal A. Farhan

Pages: 1-18

PDF Full Text
Abstract

In this study, eight rectangular reinforced concrete beams strengthened by bottom steel plates firmly interconnected to them by headed-stud shear connectors are manufactured using self compacting concrete and tested up to failure under two point loads to demonstrate the effect of steel-plate thicknesses, lengths, and the shear-connector distributions on the behavior, ductility and strength of this type of beams. A trial mix conforming to the EFNARC Constraints had been successfully carried out to satisfy the three fresh tests of SCC, these tests are flowability, passing ability and segregation resistance. The results show that there is a substantial improvement in the flexural resistance, increasing the flexural stiffness and decreasing the ductility ratio due to thickening steel plate, On contrary, increasing the spacing between shear connectors to 50% had slight effect on the flexural resistance, but subsequent increase of their spacing to 100% had seriously lowered that resistance, The spacing between shear connectors has a primary effect on the average flexural stiffness and ductility ratio. In regard to the steel plate length, its shortening has reduced the flexural resistance significantly, decreased the average flexural stiffness and had increased the ductility ratio. The experimentally determined ultimate flexural strength had been compared with its corresponding one computed by the "Strength Method" using ACI requirements where high agreement gained between them due to the nearly perfect interaction provided by SCC. The eight composite beams had also been analyzed by the non-linear three dimensional Finite Element Analysis employing ANSYS program (release 12.1),where high agreement is achieved compared with experimental results.

Article
Experimental study of Castellated Steel Beams

Mazin A. Al-Mazini .

Pages: 68-78

PDF Full Text
Abstract

In this study an investigation of castellated beam are presented. The experimental and analytical results of seven simple castellated beams and other one has webbed section are summarized in this study. The target of the search was to study the structural behavior and mode of failure of castellated beams which have different geometric shape of hole and varies lengths span of beams, and attempt to find out the possibility of Biodgett equation and Halleux equation to determine ultimate and limit load respectively. Four angle off cutting were used to achieve the change in the geometry of hole (45, 50, 60 and 90 degree). The specimens were made from IB 203x133x25 and were expanded to 1.5 times the standard depth. Ultimate and limit load, load-deflection relation shapes and mode of failure were presented and discussed. The experimental results showed that the ultimate and limit load of castellated beams decreases with increasing the angle of cutting and Biodgett equation gives acceptable results for estimating ultimate load when the angle of cutting 50° or less. Also it is found that the limit load of castellated beam by Haleux equation is incorrect when the angle of cutting greater than 50°. As well as ANSYS-12 was used to analysis these beams by nonlinear finite element method. Four- nodes shell element (SHELL 181) was used to represent the castellated and webbed beams. This model was validated by comparison of the experimental and numerical results of ultimate load and their corresponding modes of failure.    

Article
An Experimental Investigation and Numerical Analysis on The Behavior Of Reinforced Concrete Thick Slabs under Static Loading

Yousif Kh. Yousif, Ahmad S. Ali, Adel A. Al-Azzawi

Pages: 32-44

PDF Full Text
Abstract

This paper presents the testing results and numerical results of nine reinforced concrete thick slabs with and without openings. All slab specimens have the same planar dimensions (1000mm×1000mm) with three different thicknesses of (120mm,100mm,and 80mm).The slabs resting on 4 corner steel columns and tested under concentrated static loading up to failure. These slabs were also analyzed using nonlinear finite element method assuming nonlinear material properties. From the experiments, it was found that, The presence of openings in slabs supported on their four corners decreases the strength and rigidity of slabs to about (12-23) % depending on the slab thicknesses and the shape of these openings. The slabs with (circular opening) recorded a reduction in ultimate strength to about(20) % from those with square openings having an equivalent opening areas. The yielding of main steel reinforcement occurred at load about 85% of the slab ultimate load. The ultimate loads predicted by ANSYS model have showed a good agreement with the experimental results.

Article
Experimental and Numerical Analysis of Flexural Behavior of Layered Polyethylene (PET) Fibers RC Beams

Omar Khalid Ali ., Abdulkader I. Al – Hadithi ., Ahmad Tareq Noaman .

Pages: 28-46

PDF Full Text
Abstract

Nonlinear numerical analysis of nine reinforced concrete beams with dimensions (150 x 200 x 1200) width, height and length, respectively, was carried out through the finite element theory using the ANSYS software (version 15) to know the effect of different properties of layers in the one beam on the flexural behavior of reinforced concrete beams. The beams are consisting from two layers for the one cross-section. three beams are similar properties layers and the other six are with different properties layers. The beams differ among them depending on the percentage of Polyethylene terephthalate (PET) fibers added, the location of the fibrous concrete layer as well as the thickness of the layer. PET fibers were added in proportions (0%,0.5%, and 1%) from volume of the one layer, with dimension (50 x 4 x 0.3) mm length, width, and thickness respectively. All beams are reinforced with steel reinforcement (6 mm diameter at the top, 10 mm diameter for reinforcement against shear and 12 mm diameter in the tension area). The mechanical properties of each type of mixture have been studied. It was found that the different properties of the layers significantly affected the flexural behavior of reinforced concrete beams. Also the results of the numerical modeling were very close to the laboratory results obtained from the practical study, where the largest difference between the two studies was 8% and 11% for the load and deflection respectively at the ultimate point    

Article
Estimation of Hydropower Harvesting from the Hydraulic Structures on Rivers: Ramadi Barrage, Iraq as a Case Study

Omar Sulaiman Abdullah ., Ammar Hatem Kamel ., Wissam Hashim Khalil ., Amer Al-damook .

Pages: 37-43

PDF Full Text
Abstract

In recent years, Iraq suffers from exacerbation of the deficit of electrical energy as well as the great environmental pollution resulting from the use of traditional fuels. This called for serious thought to search for using clean and renewable energy sources may available in Iraq.In the present study; small hydropower (i.e. Archimedes screw turbine) are specifically used with a low head at Ramadi Barrage in Iraq. This type of small hydropower station is suitable to apply because not need high storage water or high head in Barrage. The power production in this technology depends on the parameters of the location in which it is placed such as (length L, angle of inclination α, Diameter D,….). The physical model of the Archimedes screw turbine is applied to determine the optimal α. The solid work package with a combination of Computational Fluid Dynamics (CFD) analysis by ANSYS have been used to simulate numerically a three dimensions model to determine the value of power that could be produced by the Archimedes turbine in the Ramadi Barrage. The turbine's performance are tested on two cases which represent low and high discharge investigations with different α (18⁰, 23⁰, 30⁰, 35⁰) based on different flow conditions and different water head between upstream and downstream of the barrage. The results showed that the maximum power production from the barrage is 280,000 watts with α=35° and efficiency η=89.9% for case 1; while; this power becomes 400,000 watts with α=30° but of efficiency η=84.9% for case 2. It is concluded from this research that power production from Ramadi Barrage could be investment to eliminate the deficit in the electrical energy in Iraq.    

Article
Behavior of Steel Plate Girders with Web Opening Subjected to shear conditions

Mazen ABDULLA

Pages: 104-113

PDF Full Text
Abstract

The structural behavior of steel plate girders with web opening is investigated in this study. An experimental and theoretical investigation of plate girders with different types of  openings in the web was conducted. Two types of web opening is investigated (square & circular) opening. The experimental work included testing of seven plate girder specimens under two point loads. Three specimens were tested to observe the influence of the circular web opening. The influence of the presence of square web openings was studied by testing other three specimens. While the last one was tested without opening as a reference (control) specimen. These specimens had the same dimensions. From experimental results the ultimate load of girders decreases with increasing opening size, and the position of plastic hinge depends on the size of hole A nonlinear 3D finite element model was deveioped using FE program  ANSYS to validate the experimental results Four- nodes shell element (SHELL 181) was used to represent the steel plate. The proposed finite element model was used to study the effect of web slenderness on shear resistance of plate girder with web opening. Equation was suggested to predict the shear resistance. The analysis study give good agreement with experimental work.

Article
Approximate Analytical Solutions for Large Flexural and Shear Deformations of Uniformly Loaded Simply Supported Bimodular Beam

Dhafer Kh. Jadan

Pages: 1-16

PDF Full Text
Abstract

In this paper an analytical approximate solution for large flexural deformations, shear deformations and shear stresses of a bimodular uniformly loaded simply supported beam has been developed. Verification for the solution has been performed using FEM analysis with ANSYS. The results of the program were very close the results of the analytical solution presented in this paper.

Article
Finite Element Analysis of Normal Strength, High Strength and Hybrid Reinforced Concrete Beams

Nura Jasim Muhammed ., Shaimaa T. Sakin ., Dunia sahib .

Pages: 90-103

PDF Full Text
Abstract

This paper presents the numerical study to simulate the flexural behavior of normal strength, high strength and hybrid reinforced concrete beams, under two points load with two different reinforcement ratio. The hybrid beam consists of two layers: the compressive layer is made of high strength concrete, and the tension layer is made of normal strength concrete. The simulation was done with a finite element model using the commercial finite element code, ANSYS (v.9.0). The concrete component material is modeled, the internal steel reinforcement modeled using ''LINK'' elements. The modeled behavior shown a good agreement with the experimental data. The maximum percentage difference in ultimate load-carrying capacity is 8% at the ultimate load level.Analytical study also included the effect of increasing the depth of the normal strength concrete for the hybrid reinforced concrete beam and the effect of increasing the compressive strength for high strength concrete and normal strength concrete respectively on the behavior and the load carrying capacity of the hybrid reinforced concrete beams.    

Article
Evaluation of the Behaviour of Reinforced Concrete Curved in-Plane Beams

nan nan

Pages: 14-26

PDF Full Text
Abstract

AbstractA full three dimensional finite element computational model is constructed for nonlinear analysis of reinforced concrete curved beams. This model was presented utilizing computer program ANSYS (Version 11), which is capable of an efficient analysis of the response at different load levels including ultimate loads.This work deals with the structural analysis of concrete curved beams behaviour subjected to two concentrated loads. Concrete curved beams are widely used in building and bridge constructions. Some of the available experimental tests on reinforced concrete curved beams are theoretically analyzed. This covers load-deflection relationships, crack pattern and propagation of crack at different stages of load and ultimate load capacity. The reliability of the model is demonstrated by comparison with available experimental results and alternative numerical analyses which shows 4 – 8 % difference.

1 - 13 of 13 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.