This paper deals with the nonlinear finite element analysis of two shear-critical concrete dapped-end beams. Reinforced concrete dapped-end beams having nominal shear span to depth ratio values of 0.56 and 0.59, concrete strength 32MPa and 34MPa, and reinforcement ratio via yield strength 2.83MPa and 7.39MPa, that failed in shear have been analyzed using the ‘ANSYS’ program. The ‘ANSYS’ model accounts for the nonlinearity, such as, post cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of concrete. The concrete is modeled using ‘SOLID65’- eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The internal reinforcements have been modeled discretely using ‘LINK8’ – 3D spar element. A parametric study is also made to explain the effects of variation of some main parameters such as shear span to depth ratio, concrete compressive strength, and the parameter of main dapped-end reinforcement on the behavior of the beams. From the present modality the capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in reinforced concrete dapped-end beams have been illustrated. The parametric study shows that the beams shear strength is affected by the shear span to depth ratio, concrete compressive strength and the amount of main reinforcement.
The present study, concern about an experimental work to study the stress-strain relationship of steel-fiber reinforced polymer modified concrete under compression. Four different mixes with weight proportions of (1:2:4) were used as; normal weight concrete (NC), polymer modified concrete (PMC) with (10%) of cement weight and two mixes of steel-fiber polymer modified concrete with (1%) and (2%) volume fraction of steel fiber, (SMPC). The influences of polymer and fiber addition on peak stress, strain at peak stress and the stress-strain curve were investigated for concrete mixes used. For all selected mixes, cubes (150×150×150mm) were made for compressive strength test at (28) days while stress-strain test was caried out on cylinders (150 mm 300 mm) at the same age. Results showed an improvement in compressive strength of polymer modified concrete (PMC) over reference mix, the maximum increase of it was (13.2 %) at age of (28) days. There is also an increase in compressive strength with increasing of steel fibers content with comparison to normal concrete, the maximum increases of it were (19.6% and 25.2%) of mixes with 1% and 2% fiber content by volume respectively. In terms of modulus of elasticity, the addition of polymer and the presence of fibers cause a significant increase in it. The peak of stress- strain curve for normal strength concrete (Mix No.1) was linear whereas it was more sharp for the other mixes. The behaviour of normal strength concrete (Mix No.1) was linear up to 20 % of ultimate strength, while for the mixes with the higher strength i.e. polymer modified concrete and fibers reinforced concrete (Mixes No.2, 3 and 4) the linear portion increases up to about 50 % of ultimate strength