Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for durability

Article
Optimization of Different Properties of Ultra- High Performance Concrete Mixes for Strengthening Purposes

Duaa Suleman, Mahmoud Mohammed, Yousif Mansoor

Pages: 72-85

PDF Full Text
Abstract

The current research’s purpose is to examine how Ultra-High Performance Fiber Concrete (UHPFC) holds up in terms of strength and durability for strengthening purposes. For this reason, the experimental and the theoretical studies in this research attempted to assess different fresh and hardened properties of a variety of ultra-high performance combinations. Steel fibers were utilized to differentiate all of the program's combinations at percentages of  0.25 %, 0.5 %, 0.75 %, 1%, and 1.25 % by volume. Mini flow slump, compressive and flexural strength, ultrasonic pulse velocity, water absorption, and porosity tests were all used to examine the performance of the strength and durability of the material. The findings of this study's trials showed that steel fibers increased the strength of UHPFC. The steel fiber ratio of 1% gave the maximum compressive strength, whereas 1.25 percent yielded the highest flexural strength. Because the fibers function as a bridge, preventing internal breaking, the tensile test results were improved as the proportion of steel fiber rises. Through the use of the multi-objective optimization approach, the optimal ratio of fibers was chosen at the end of the laboratory work since it has the best durability and strength characteristics. Statistical software (Minitab 2018) was used to find the optimal combination of UHPFC that meets all of the requirements. The theoretical selected optimum ratio of 0.77% of fibers obtained from the optimization was evaluated and validated experimentally.  The optimized mix provided 90.28 MPa, 14.6 MPa, and 20.2 MPa for compressive, splitting tensile and flexural tests respectively with better durability performance compared to other mixes prepared in this investigation. 

Article
Diagnosis of Fire Simple R.C Building Members Damages By Using Expert System

Ali M. Sagheer, Yousif A. Mansour Al-Kubaisy, Haitham Z. Hussein Al-Qaissi

Pages: 25-46

PDF Full Text
Abstract

During the last four decades, incidence of failure of reinforced concrete structures has been seen widely for many reasons, such as increasing service loads ,war accidents, fire and/or durability problems and the economic losses due to such failures are costly. Nowadays, the size and the form of repair and rehabilitation market are too large since there has been an increased emphasis on repair and retrofitting of defected structures over demolition and new construction. An expert system is an interactive computer-based decision tool that uses both facts and heuristics to solve difficult decision problems based on knowledge acquired from an expert. To realize these requirements, a logic programming Prolog language was utilized together with diagnosis technology. The logic programming language formalizes the domain knowledge. The expert system Diagnosis of Fire Simple R.C Building Members Damages (DFSRCMD) developed in this paper is a diagnostic advisory system, which can be used as an alternative to the human expert, to give technical decisions in diagnosing fire damages in R.C. structural elements: beams, columns and slabs.

Article
Performance of low-cost Concrete using Bentonite clay as a partial replacement with Cement

Muhammad Usama, Ubaid Ullah, Zaid Muhammad, Muhammad Abbas

Pages: 39-51

PDF Full Text
Abstract

Concrete is produced from millions of tons of Cement, which emits a significant amount of carbon dioxide from cement mills and contributes to global warming. Therefore, it is important to seek out less expensive and more environmentally friendly substitutes for OPC. While various substitutes are available, such as recycled glass, marble, silica fume fly ash, or agricultural waste like rice husks or wheat straw, the performance of concrete is significantly affected when bentonite is used as a replacement for Cement. This study aims to evaluate Jhelum bentonite, which is located at 32°56′ north and 73°44′ east longitude, as a replacement for Cement in different ratios (0:100, 10:90, 20:80, 30:70, and 40:60) to improve the durability of the system as more bentonite is used to replace conventional Portland cement, the workability, density, and water absorption of the new concrete all decrease. Compressive Strength, Tensile Strength, and flexural Strength of blocks and cylinders were tested after being cured for 7 and 28 days. Analysis of these strength tests revealed that the mixes containing bentonite were weaker after 7 days compared to 28 days, and the Strength of blocks was reasonable compared to cylinders.Keywords: Bentonite, Concrete, Compressive Strength, Tensile Strength.

Article
EFFECT OF POLYMER (S.B.R.)ON SULFATE RESISTANCE OF CONCRETE

Aseel M. Mohammed, Ibrahim A. S. Al-Jumaily

Pages: 35-59

PDF Full Text
Abstract

ABSTRACT:The resistance of concrete to sulfate attack is considered as one of the important factors for concrete durability.The effect of SBR polymer on sulfate resistance of concrete is investigated. Both internal and external sulfate attack are considered.Internal sulfate attack was made by adding gypsum to raise the sulfate content of sand to that of Ramadi city soil (2.17%), while the external sulfate attack was made by adding chemical materials (MgSO4.7H2O, Na2SO4, CaCl2.2H2O, NaCl) to tap water to convert it into water similar to groundwater of Ramadi city.The laboratory tests were compressive and flexural strength, modulus of elasticity, slump, ultra-sound velocity and total percentage of sulfate after exposing to attack for different ages. It was found that the compressive strength of reinforced normal concrete (RNC) for ages (7,28,90,180) days respectively were (20,28,11.166,7) MPa, the compressive strength of polymer Portland cement concrete( PPCC) with polymer/cement ratio( P/C)=5% (PPCC5) were (21.83,32.666,12.766,8.733) MPa and for PPCC with (P/C)=10% were (24.166,35.866,15.533,11.366)MPa.While the flexural strength of RNC for different ages (7,28,90,180) respectively were (3.953,3.7,1.68,11.305) MPa, the flexural strength of PPCC5 were (4.05,5.025,2.13,1.605) MPa and for PPCC10 were (4.43,6.375,2.43,1.92) MPa.The static modulus of elasticity at age (28) days for (RNC) was (37.4) GPa , for PPCC5 was (9.7) GPa and for PPCC10 was (13.63) GPa.Slump for (RNC) was (155) mm, for PPCC5 was (142) mm and for PPCC10 was (75) mm.T he ultra-sound velocity of RNC for ages (7,28,90,180) respectively were (4.2,4.445,4.203,4.53) Km/sec , for PPCC5 were (4.36,4.646,4.53,4.176) Km/sec and for PPCC10 were (4.437,4.837,4.656,4.52) Km/sec.It was found that (PPCC10) has higher resistance to sulfate attack than (PPCC5) and (NRC). The thesis refers to necessity of polymer to improve the resistance of concrete to sulfate attack although if the sulfate percentage raise to more than (0.5) % which represents the maximum limit of sulfate percentage in I.O.S No. 45-1970.

Article
Some Properties of Self-Compacting Concrete with Optimum Percentages of Cement Replacement Materials

Tasneem Salah, Mahmoud Al-Ani, Yousif Mansoor

Pages: 19-29

PDF Full Text
Abstract

This paper presents and discuses some properties of self-compacting concrete SCC containing optimum contents of different types of cement replacement materials CRMs like fly ah, silica fume and limestone powder. The purpose is to evaluate the performance of SCC mixtures to choose the best one for strengthening purposes of corroded reinforcement concrete beams. In a preliminary work, the theoretical optimum contents of the above materials were specified using statistical program (Minitab) and they were verified experimentally. This verification based on checking fresh properties such as slump flow, T500, L-box and segregation resistance as well as compressive strength. The optimum contents of CRMs: 14% fly ash, 19% limestone, 18% silica fume plus fly ash and 11% silica fume were selected and studied. Compressive, tensile, and flexural strengths were examined, as well as the modulus of elasticity, water absorption and porosity (which reflect the related durability properties) were examined. Test results show that the optimum verified theoretical percentage of a combination of fly ash and silica fume, at 18% by weight of cement with a fixed water-binder ratio of 0.33 showed the best overall performance. It was deduced that this SCC mix gave the highest mechanical properties and the lowest porosity and water absorption. For example, the compressive strength increased by 36.25% as compared to SCC mix containing limestone powder. Further, the porosity and water absorption decreased by 120.8% and 164% respectively as compared to the above same SCC mix. Thus, it could be used for strengthening purpose of corroded RC beams.

Article
Alternative Construction Materials to Improve Concrete Characteristics

Adil Nawar

Pages: 52-63

PDF Full Text
Abstract

Determining building materials and their types and determining their effect on concrete properties are consistent with the technical and design variables of buildings. From this point of view, the research came to include theoretical studies and empirical tests for some materials, focusing on the aggregate as a basic material involved in the formation of concrete.     The first part includes the introduction, research problem, assumptions, importance, and purpose of the research. the second part was to conduct practical experiments by designing different concrete mixtures in the mixing ratios and the type of aggregate until results were reached regarding the resistance of the concrete that was produced as a result of the difference in densities between ordinary aggregate concrete and lightweight aggregate concrete. Through that, for example, the lightweight aggregate with an age of (7) days and a mixing ratio of (1: 2: 4) gave strength to the models used (19.58) Mpa, and for the same mixing ratio and at an age of (28) days, it gave durability ( 22.83) Mpa. When the mixing ratio was changed to (1: 1.5: 3), it was (25.74) MPa and (32.34) MPa at the age of (7) days and (28) days, respectively. These results give an accurate indication that the aggregate is light in weight with similarity to the ordinary aggregate in obtaining concrete with a bearing strength within the approved specifications without guaranteeing the environmental treatments and the resulting loads

Article
Structural Performance of Ferrocement Beams containing Plastic Waste Fibers and Longitudinal Holes Filled with Lightweight Concrete

Abdulrahman Jamal Alobeadi, Abdulkader Ismail Al-Hadithi, Muhannad Haqqi Aldosary

Pages: 1-18

PDF Full Text
Abstract

Ferrocement is a type of concrete made of mortar with different wire meshes. It has wide and varied applications in addition to its strength and durability. This research aims to combine ferrocement and sustainability, as over time, the consumption of plastics, especially plastic bottles, has increased and has serious negative effects if buried, burned, or chemically analyzed. Therefore, this research aims to benefit from this plastic waste and introduce it into the construction field by using plastic waste fibers in the concrete mixture instead of cement at a rate of 0.5% and 1% by volume. This research studied the mechanical properties of nine samples of ferrocement beams with dimensions of 1200 × 200 × 150 mm3. A longitudinal hole with a diameter of 50 mm was drilled in different places of the beams and filled with lightweight concrete to facilitate the use of the hole in service passes when drilled, with a study of the initial cracking loads and the resulting deflection in addition to the failure modes and the deflection resulting from the maximum load. The results showed an improvement in load resistance with an improvement in deflection at the maximum load, In addition to an increase in the improvement of Toughness and Stiffness of ferrocement beams.

Article
Effect of Different Conditions of Carbon Dioxide Curing in Cement – Based Composites (On Review)

Ziyad Majeed Abed ., . Ali Attiea Jaber, Hiba O. Ghaeb ., Ali Mohammed Hasan .

Pages: 10-17

PDF Full Text
Abstract

The most concerning issue confronting the planet these days is the ascent in Carbon dioxide (CO2) levels to record levels. The cement industries are answerable to between 6-8 % of worldwide CO2 emitting. In construction sectors, researchers tried to contribute in decreasing of CO2 in atmosphere produced by industry and using that was released in air. Accelerated CO2 curing is one of the methods used to get benefit from CO2 in the air. In this paper, CO2 concentration in addition to pressure, relative humidity and period of curing all had a significant influence upon the features of Cement – Based Composites. Results showed that using CO2 curing with different and specific properties of fibers (types, quantities, circumstances and lengths) improved the most mechanical properties and enhanced durability such as: strength, stiffness, ductility, toughness, porosity, and absorption.    

Article
The effect of high-temperature on concrete properties and the role of waste pozzalanic material to increase concrete resistance, A review

Amer Jamel, Sheelan Hama

Pages: 150-156

PDF Full Text
Abstract

The performance of the structural materials (concrete and steel reinforcement) and the behavior of the structural members after they were exposed to high temperatures have been considered the main topics of the current literature review. All varieties of concrete mixtures lost their compressive strength after 300˚C, even though there was no discernible strength loss between 150 and 300˚C. It was also discovered that the heating time had no appreciable impact on the strength loss when the exposed to heat less than 300 ˚C. Above 300 ˚C. Concrete begins to lose strength after being exposed for longer than one hour; the greatest loss of strength occurs during the first and second hours of exposure. Both the cured cement paste and the aggregates undergo chemical and physical changes at temperatures ranging from 600 °C to 900 °C. The 5% weighted rice husk ash (RHA) blended concrete still had an advantage in compressive strength, over the concrete when subjected to temperatures up to 700 C for two hours. Adding more recycled glass and ceramic particles to regular concrete increases its overall compressive and tensile strengths. Concrete becomes more durable and has fewer cracks when there is a higher replacement rate for ceramic and glass particles. The splitting tensile strength decreased with increasing temperature, changing from 60% to 70% of its initial strength after 600 °C. In this review, the better performance of concrete than the other concrete in terms of mechanical, physical, and durability properties at both room temperature and high temperature were concrete with 10% waste glass powder (WGP) substitution as a partial of cement and 10%–20% crushed glass (CG) substitution as a partial of aggregate .

Article
Possibility of useing the western Iraqi desert Silica sand at drinking water treatment fitters

أرکان ضاری جلال ., مجید مطر رمل ., عبد صالح فیاض .

Pages: 38-52

PDF Full Text
Abstract

This study was determined specified characteristics of Iraqi silica sand , touse it in the drinking water treatment rapid gravity filters. These properties includes grain size ,uniformity coefficient , grain shape , porosity , density , durability, chemical content and capability of solubility in the acid ..this study explained that the Iraqi silica sand has high degree at mechanical and chemical stabilities .The e filter column was operate for many cycles , the average results of raw water and treatedwater for variable values (turbidity , total suspended solids and total bacterial count) was taken . The study showed that possibility of use the Iraqi silica sand in the westernIraqi desert in the rapid gravity drinking water treatment plant filters . when the raw water has initial turbidity (5.24 NTU) ,the study and the experimental tests showedthat the average removal efficiency of turbidity , T.S.S ,and T.B.C of (82.9%,82.8%and 79.5%) respectively . when the raw water has initial turbidity (9.58 NTU) ,the study and the experimental tests showed that the average removal efficiency of turbidity , T.S.S ,and T.B.C of (79.4%,78.7% and 74.1%) respectively . when the rawwater has initial turbidity (28.35 NTU) ,the study and the experimental tests showedthat the average removal efficiency of turbidity , T.S.S ,and T.B.C of (72.6%,72.7%and 60.9%) respectively

Article
Ductility, Toughness, and Flexural Performance of Hybrid Foamed- Normal Concrete Beams

Angham Jaffal, Ameer Hilal, Akram Mahmoud

Pages: 97-106

PDF Full Text
Abstract

A study examined the ductility and toughness properties of beams made of reinforced concrete, including foamed, normal, and hybrid beams. Nine reinforced concrete beams were produced: three foamed concrete beams, three normal concrete beams, and three hybrid concrete beams. Each beam possessed identical rectangular cross-sectional dimensions of 1500 mm × 250 mm × 150 mm. The flexural parameters (ultimate load, ductility, deflection, and durability) were assessed for each type of concrete utilized. The study's results showed that the load-bearing capacity of hybrid concrete beams was comparable to that of normal concrete beams, whereas foamed concrete beams exhibited slight improvement in their ability to carry loads. The ductility of reinforced foamed concrete beams was lesser than that of normal concrete. For over-reinforced beams, the ductility of hybrid concrete beams showed a significant improvement of 61% compared to foamed beams and an even more significant increase of 91.7% compared to normal beams. Furthermore, the hybrid concrete beam with over-reinforcement had a flexural toughness of 18.7% greater than the normal concrete beam. Suggested that a hybrid section comprising conventional and foamed concrete be utilized to decrease ductility and improve stiffness.

1 - 11 of 11 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.