Self-Compacting Concrete (SCC) is a pioneering concrete that can gush beneath its own load, filling the formwork, and achieving full consolidation while maintaining sufficient cohesion to handle the concrete without segregation or bleeding issues. To develop EPS- fiber reinforced SCC, waste materials such as Expanded Polystyrene Beads (EPS) and waste plastic fibers (Polyethylene terephthalate (PET)) were incorporated. This study investigated the response of SCC to the incorporation of different ratios of PET fibers (0.35%, 0.5%, and 0.75%) and 10% of EPS particles and its impact on fresh and mechanical properties of SCC mixtures. Five SCC mixtures were designed, including the reference mixture, 10% EPS mixture, and three volume fractions (Vf) of PET mixtures. Test results indicated that EPS particles had an optimistic effect on fresh properties and a slight negative effect on mechanical properties. While PET fibers revealed a slight negative impact on fresh properties, they also improved mechanical properties. The highest and lowest values in fresh properties tests, including slump flow, T50, V-funnel, L-box, and sieve segregation were (780mm for (E %10) mix, 5.4 seconds for (0.75% f) mix, 19 second for (0.75% f) mix, 0.85 for (E %10) mix, and 10.77% for (R) mix), respectively and (670mm for (0.75% f) mix, 1.8 second for (E %10) mix, 6 seconds for (E %10) mix, 0 for (0.75% f) mix, and 3.28% for (0.5% f) mix), respectively. While, the highest and lowest values in mechanical properties tests, including density, ultrasonic pulse velocity (UPV), compressive strength, and splitting tensile strength were (2305 kg/m3 for (R) mix, 4.2 km/s for (R) mix, 48 MPa for (0.5% f) mix, and 3.66 MPa for (0.5% f) mix), respectively and (2170 kg/m3 for (0.5% f) mix, 4.03 km/s for (0.75% f) mix, 31 MPa for (E %10) mix, and 2.33 MPa for (E %10) mix), respectively
The aim of this study is to develop Lightweight self-compacting concrete (LWSCC) mixtures using locally sourced waste materials such as Expanded Polystyrene Beads (EPS) and Waste Plastic Fibers (WPFs) which are all available abundantly available in Republic of Iraq at little or no cost. The fresh, hardened and mechanical properties of these LWSCC were studied, followed by results analysis. Five different mixes of LWSCC were prepared in term of WPF content (0.25, 0.5, 0.75, 1.0, and 1.25 %), in addition to the control mix (R mix) and lightweight concrete (E mix) made of EPS content as a replacement of coarse aggregate. The study showed that the LWSCC produced with these waste materials were decreased the density (lightweight) of the concrete mixes as EPS tend to form more clumps, absorb water and make the mix dry. Therefore, concrete mixtures were adjusted accordingly to be able to offset the workability caused by the addition of EPS. The increase in WPF content decreased the workability due to clumping that occurred in the mixing phase. The analysis of mechanical properties of the LWSCFRC specimens revealed that there was not much improvement. While LWSCC with 100% of EPS replacement as coarse aggregates and 1.25% WPFs provides the best flexural toughness performance