The concern over increasing needs for drinking water and awareness for development of systems to improve water quality both for drinking purposes and for effluents from wastewater treatment and industrial facilities have provided incentives to develop new technologies and improve performance of the existing one. Adsorption technology has many advantages over other treatment methods such as simple design, low investment cost, limited waste production, etc. Synthetic water with a dosing of artificial copper solution (Cu No3) was passed through a PVC column (15 cm diameter, 100 cm length) containing limestone as a filter media in three different sizes, using three different hydraulic rates, and three initial influent copper concentrations (7.04, 4.39, 1.72) ppm .For this study, three experiments have been conducted; continuous batch and field experiment. The up flow roughing filtration is the suitable technique to recover heavy metals present in aqueous solutions, without the need of adding further substances. The filtration results demonstrated that the smaller size of filter media (3.75) mm gave higher removal efficiency (93.75 – 98.80) % than larger filter media (9.50) mm which gave removal efficiency of (67.61 – 94.0) %. This is due to the large specific surface. The smaller size of limestone achieved the longer detention time (49) min, so the removal of Cu was more than (90) % for the (50) min of experiment. At lower flow rate (0.16) L/min, the removal efficiency was higher than at higher flow rate (0.77) L/min. At high flows, there is a reduced period of surface contact between the particles and copper solution. This study also involved three different batch experiments .The removal efficiency was (93- 97) % for the three types of limestone which indicates the importance of limestone media in the removal process. This also indicates that the removal efficiency was increasing with the increase of the limestone volume. Field experiment has been conducted using wastewater from Al- Dura Electric Station on the three types of limestone so that to ensure the laboratory tests. It was achieved good removal efficiency range from (87.5) % to(97.5) % at the high adsorbent dose .To calibrate the physical model, a computer program of multiple regressions is used to assess the relative importance of the predicted variables. The partial correlations indicate that influent concentration of copper, surface loading (flow rate), and detention time are the most important variables while the size of limestone is not important as others.
AbstractThis work presents the study of water flow through a packed bed containing spherical glass particles distributed randomly. The packed bed was 7.62 cm in diameter and 57 cm long. The glass particles were 0.42, 0.50, 0.61, 0.79 and 1.01 cm in diameter. Different flow rates of fluid were used which expressed by modified Reynolds number. The experiments were carried out at laboratory temperatures at city water temperature (25◦C) for water flow. Many variables were studied in this work such as fluid type, flow rate and the packing porosity, in order to study the effect of these variables on the pressure drop and friction factor. The results showed that the pressure drop through a packed bed is highly sensitive to the packing porosity which has a significant effect on the friction factor. It was found that as the bed porosity increases the friction factor values as well as the pressure drop values decrease.Empirical correlation for friction factor as a function of Reynolds number for water flow through packed of mono size packing has been made, and can be written as follows: The correlation coefficient was 0.97406 and percentage of average errors was 2.44%.