Corrosion in steel bars is considered a big problem because corrosion is mainly responsible of decrease virtual age of structures and many risks indicated by deterioration. In addition, corrosion increases the cost of maintenance, particularly structures exposed to harsh environmental condition. FRP bars (Fiber Reinforced Polymer) became an alternative material from traditional steel bars. FRP had properties made it used in civil engineering sectors which are lightweight, non-corrosive, non-conductive made it a preferred alternative from steel bars in aggressive environments. FRP bars don’t have yield made it con not bind outside its linear behavior to make ties, because of the brittle behavior of FRP bars up to failure. So that, the new innovative manner by using CFRP sheets stirrups immerged by sikadur330 for produce beams can resist the harsh condition and purely reinforced with FRP in a new manner can provide stirrups in full different sizes and with lower cost. Twelve beams reinforced with GFRP bars in three different ratios of tension reinforcement (four beams for each ratio). Three control beams with steel stirrups: two beams were designed to fail in shear. Whilst, the residual nine beams with shear reinforcement made from CFRP sheets strips, immerged by sikadur330. The main variable were studied is the change in type and amount of secondary reinforcement and change in amount of primary reinforcement. The test was conduct under four point loading and in simply supported conditions. The result of tested beams illustrated that, beams had a higher percentage of tension reinforcement and shear reinforcement displayed an increasing in ultimate load about 38.1% from related control beam. While, an equivalent amount of shear reinforcement displayed an increasing in carrying load capacity up to 10%. In maximum ratio of CFRP sheets immerged by sikadur330 stirrups convert failure mode from shear to flexural indicated by crushing in cover of concrete. In addition, increased energy absorption, changed cracks orientation, increased energy absorption, decrease principal strain and increased concrete tensile.
In this study, the structural behaviour of RC-deep beams of glass fibre-reinforced polymer (GFRP) rubberized concrete is investigated. Rubberized concrete is manufactured by replacing fine sand aggregate with rubber crumbs in volumetric replacement ratios. The main variables were the crumb rubber content (0%, 10%, and 20%) and the main reinforcement ratio. Tested Six samples of deep beams with different dimensions (b = 150, h = 300 mm, L= 1400 mm) were under a four-point load until failure. The parameters under investigation were the mechanical properties of mixtures, load-midspan deflection curves, toughness, and the load-strain relationship. The results indicate that the increased crumb rubber content led to a decrease in the mechanical properties of rubberized concrete mixtures. It was found that the behaviour of all samples of rubberized concrete affected the deflection load curve, the ultimate load, and the increase in deflection. The sample R2-10% Rub showed the highest toughness among the tested samples, with an increase of 301.6% compared to the reference.
This study program has been arranged to test the behavior of punching shear for concrete slabs reinforced by an embedded glass fiber reinforced polymer (GFRP) reinforcements. However, the shear resistance of concrete members in general and especially punching shear of two-way RC slabs, reinforced by GFRP bars has not yet been fully investigated. Seven decades ago, many researches have been carried out on punching shear resistance of slabs reinforced by conventional steel and several design methods were created. However, these methods can be not easily applied to FRP-reinforced concrete slabs due to the difference in mechanical properties between (FRP) and steel reinforcement. sixteen specimens are to be cast in lab within two categories of reinforcements such as GFRP and equivalent steel reinforcements. In addition, based on experimental data obtained from the author’s study and ACI model, the paper performed an evaluation of accuracy of proposed model. The results from the evaluation show that the ACI-formula gave inaccurate results with a large scatter in comparison with the test results of this study. A new design formula can be proposed for more accurate estimation of punching shear resistance of (GFRP) specimens.