Estimation of runoff in an ungauged watershed is a significant part in the process of the water resources management. In the Iraqi western desert, the accessibility reliable surface runoff knowledge is scarce, that affects a critical difficulty for the hydrologic engineers. Estimation of surface runoff quantity in valleys of interrupted flow is significant to mobilize the deficiency water resources and manage valleys flow accurately. The incorporation of the Soil Conservation Service Curve Number (SCS-CN) approach with the geographic information system (GIS) was applied for estimating runoff volume of Wadi Hijlan, Fahamy, and Zgadan. The amount of runoff of the maximum storm were 7388700 m3, 12750000 m3 and 9851590 m3 for Hijlan, Fahamy and Zgadan respectively. In addition, the results showed acquired via the SCS-CN technique, revealed that the runoff depth fluctuated from 12.5 mm to 20.3 mm for (48mm) the maximum storm of rainfall through 2018-2019. The present strategy can be used for planning and development other valleys in the western desert of Iraq.
This research aims to study sediment discharges in Al Anbar Thermal Power Station in two phases the first phases include a follow-up study sediment load from the river by taking samples at different depths and different discharges, and noted measurements, calculations for each section while the second phases included an account of the tonnage of river sediment through the program depends on the equation of Meyer, to five sections (18, 26, 35.43, 45) with the observation results and do a comparison between the two phases. Research has included also employ technology of remote sensing and geographic information system GIS in the study of the waters of the Euphrates at thermal power plant after an analytical study was taken amount sediment and size in the study area and then link results with the geographic information system GIS for the purpose of producing layers represent the nature of the spatial distribution of these Sediments on the entire study area and the aerial imagery of software Google Earth with the use of the program (Arc view), one of the geographic information system software. The research concluded give recommendations for controlling the movement of sediment when the at Al Anbar Thermal Power Station Outlet through two main axes of them increase the flow velocity exceeds the critical velocity and the other includes the disposal of sediments away from the site of the station outlet.
The phenomenon of random housing in Ramadi city is one of the important planning challenges facing the city, especially after rapid growth rates of urban and population grow thing in the city, hence the importance of research is to prove that sustainable transport planning has a prominent role in addressing this problem and producing many social economic and environmental problems. This study aims to determine the role and importance of transport and sustainability planning criteria for the proposed strategies to address the informal housing spread in the city neighborhoods and sectors within and outside the boundaries of the master plan of the city.The use of Analytic hierarchy process (AHP), which combines descriptive and quantitative analysis, will depend on the available data for city at the present time ; as well as, on the expertise of specialists and persons concerned in the subject through a questionnaire to reach the most important factors that affecting random housing from the point of sustainable transport on one hand and in addition to prioritizing treatment according to the proposed strategies presented to planners and local authorities in the city.The research encountered a number of difficulties and obstacles, the most important of which is the scarcity of data and information available in the subject, which led to personally analyze data and resort to the use of geographic information systems (GIS) for the purposes of quantitative and geometrical analysis. The main results for the basic criteria affecting the role of sustainable transport on Ramadi city by gradation from top to lowest ,( i.e. environmental criterion, followed by economic, social, and finally schematic). As for secondary standards, the highest value was the share of the standard of treatment of residential destroyed areas, within the environmental criterion, and the lowest value is the calibration of road efficiency within the planning criterion.
Land cover assessment is a significant research area in GIS and remote sensing, aiding decision-makers in understanding land use changes' underlying forces and enabling effective actions. In general, Iraqi cities are experiencing severe degradation of agricultural lands due to population growth and residential development, impacting socio-economic and environmental quality. In addition, the deriving forces of transforming the lands from agricultural to other land cover types are not well understood. Research is needed to map and assess agricultural lands for better economic and environmental solutions. The study uses ANN-CA integration to predict agricultural land changes in Babil province, central Iraq. The CNN model achieved the highest accuracy, with a total land cover transformation of 2143.1 square kilometres between 2000 and 2020. the overall accuracy was 0.95, 0.93, and 0.90 based on images captured in 2020, 2000, 2010) respectively. This methodology is considered an efficient tool for monitoring agricultural lands and developing development plans in Iraq.
Most of Iraqi Cities suffering from delaying of the update of Master plan, especially in the period between 1980 and 2003 the main reasons this delay are the Gulf War and the Economic Blockade. Increasing of population is the major factor causes changing in urban land use due to the human demand. These changes cause differences between master plan and real situation. To mention the spatial irregularities in Falujah City, the comparison between the master plan layers and updating land use map layers has achieved in this paper to determine the spatial change and irregularities in the city, that represent the reality of situation in case study . The changes were remarked; the areas of changes were calculated in table and thematic map were produced in our paper to illustrate the goal. This data processed using combination of GIS technique, and global positioning system GPS and geo media software.
The current study includes application of QUAL2K model to predict the dissolved oxygen (DO) and Biochemical Oxygen Demand (BOD5) of lower reach of the Diyala River in a stretch of 16.90km using hydraulic and water quality data collected from Ministry of Water Resources for the period (January-April 2014). Google Earth and Arc-GIS technique were used in this study as supported tools to provide some QUAL2K input hydro-geometric data. The model parameters were calibrated for the dry flow period by trial and error until the simulated results agreed well with the observed data. The model performance was measured using different statistical criteria such as mean absolute error (MAE), root mean square error (RMSE) and relative error (RE). The results showed that the simulated values were in good agreement with the observed values. Model output for calibration showed that DO and CBOD concentration were not within the allowable limits for preserving the ecological health of the river with range values (2.51 - 4.80 mg/L) and (18.75 – 25.10 mg/L) respectively. Moreover, QUAL2K was used to simulate different scenarios (pollution loads modification, flow augmentation and local oxygenation) in order to manage the water quality during critical period (low flow), and to preserve the minimum requirement of DO concentration in the river. The scenarios results showed the pollution loads modification and local oxygenation are effective in raising DO levels. While flow augmentation does not give significant results in which the level of DO decrease even with reduction in the BOD5 for point sources. The combination of wastewater modification and local oxygenation (BOD5 of the discharged effluent from point sources should not exceed 15 mg/L and weir construction at critical positions 6.67km from the beginning of the study region with 1m height) is necessary to ensure minimum DO concentrations.
Recently, COVID-19 pandemic has swept the world left many victims as well as heavy casualties in the global economic system. As a result, governments have applied some necessary actions such as curfew and restricted mobility between cities, in order to control the spread of COVID-19 pandemic. However, these actions can decrease the traffic congestions within megacities leading to cleaner air and lower temperature. On the other hand, these actions have negative impacts on tourism in congested cities like Karbala and Najaf.Nowadays, urban climatic phenomena within holy cities have attracted researchers . The aim of this study is the evaluation of Urban Climate in term of temperature before and during COVID-19 pandemic period by using Landsat images and GIS techniques. Final findings showed a difference between Land surface temperature before and during COVID-19, which reached about 9 C° within built-up areas and bare lands. While this difference showed a relatively slight decrease within vegetated areas and waterbodies reached about 2 C°. This indicated that built-up areas and bare lands have been mainly affected by governmental restrictions during COVID-19 compared to other areas. Our analysis indicated that the temperature of the surface in urban areas has decreased during COVID-19 compared to the period before COVID-19. The proposed method can pave the way for planners and decision-makers to evaluate other holy cities in terms of the environment and recent disasters like the COVID-19 pandemic
Cadastral maps are an important component of land administration in most countries. In virtually all developed countries, the needs of computerized land and geographic information systems (LIS/GIS) has given urgent impetus to computerizing cadastral maps and creating digital cadastral data bases (DCDB). This process is creating many institutional, legal, technical and administrative problems. This desire to establish DCDBs is being given increased impetus due to a new range of enabling technologies such as satellite position fixing (GPS), improved spatial data collection techniques such as digital theodolites and "soft copy" photogrammetry, as well as a vast range of new information and communications technological tools, thus contributing to the advancement and keep up with the great countries. This paper presents the problem of cadastral maps. The hitherto existing cadastre, consisting of paper maps and land registers, is now becoming insufficient. Its shortcomings force developments leading to its improvement. One of the ways is the creation of a Land Information System. A digital cadastral map is the main component of this system. The structure and information content of the map is presented, its differences from analogue maps are shown, and the process of map creation is described. A digital cadastral map can be the basis for additional thematic layers, successively converting it into a complex system for management of administrative units.
The research aims at revealing the morphometric characteristics of wadi Jbab Basin, which include areal ,relief characteristics, and the shapes of cross- sections of the valley. The hydrological properties of Jbab basin were studied to estimate the amount of water received by its catchment area during rain falls, thus, the appropriate places for the construction of dams and reservoirs for use in water harvesting can be determined. The area under study is located in Iraqi western plateau , between the latitudes of 33º 55' 45"N to 34 º 27' 50" N, and longitudes 41º 24' 30" E to 41º 43' 00" E. Remote sensing technology (RS) and geographic information systems (GIS) were used to reach the objectives of this research, so Digital Elevation model (DEM) for the year 2009 was brought to program (Arc GIS 9.3) and detected the basin and valley of Jbab automatically by using the hydrological analysis method. The area under study is characterized by the drought with a deficit of water in all months of the year where the highest in the month of July, amounting to 324.5 mm and the lowest in January, 10.92 mm. The geological formations prevail formations limestone, with sandy soil to sand-clay mixture, with lack of density in the vegetation. The average slope in basin of Wadi Jbab is 0.25 degree. There are five ranks of river, the sum of their tributaries 676 tributary within an area of 986.6 km ², and its perimeter is 214.3 km , it is also noticed the form of the basin tends to form a rectangle, with three places suitable for the construction of dams and reservoirs depending on the morphometric and hydrologic information that related to the area of research.
In this study remote sensing was employed with Geographical Information System (GIS) for study the hydrochemistry properties for Habania Lake that is located on Euphrates river, where the use of traditional methods are not fulfill the demands for study quality and situation of water of great areas which need enough time and money . Analytic study was performed on hydrochemical aspect through samples of store water and make physical and chemical water tests with GIS to product layers represent place distribution nature of these elements on the whole area of reservoir through the use of satellite image. The present study concluded that the use of remote sensing , geographic information system and analytic study for samples was employed to study quality and situation of water .
Proliferated in recent years the desertification phenomenon, and the desert areas started expanding at the expense of green areas, which affected the environment. This research focused on studying the desertification and its changes regarding to the time, through using different multi band satellite images for the area of interest in different times and studying the changes appear to the land cover and calculating the areas of each parameter to make the comparison for each environmental parameter (soil, agriculture, and water).
Dams are considered as the best solution to conserve water especially in arid and semi-arid regions. This study aims to design a small dams series to conserve rainfall water. Mathematical model is proposed to optimize these dams height and locations, its named as Optimal Height And Location Model (OHALM). In this study, new method is introduced to estimate the optimal water level and volume of storage by combining between the digital elevation model generated by the Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) data, and the proposed model (OHALM). Two dams sites were selected for checking the validity of proposed method. The results of the present study showed that the error percentage increase or decrease from reference value by 3.5%, 13% for water level in Al-Rutba dam and Horan 3 dam respectively, and by 6.63%, 35.8% from volume of storage in Al-Rutba dam and Horan 3 dam respectively. The relative error shows a big difference from the actual data, which is a positive percentage for storing additional quantities of rainwater. That means the proposed program is better than the existing dam design, and thus the possibility of using this method to determine the optimal height of the proposed water harvesting sites.
nan
One of the most significant aspects of developing any region is establishing a viable road network and determining the relationship between landscape use and road networks. Adequate connectivity and direction are essential for the proper construction of any network. However, the Al-Ramadi road network has received far less attention and appraisal. As a result, the purpose of this study was to evaluate the current road network link in Al-Ramadi city. In addition, the GIS application was used in this study to show the city's primary features. The Alpha index, Beta index, Gamma index, and Eta index were utilized to evaluate the road network in this research. The primary goal of this research is to evaluate how successful the road network is in containing current road traffic and to make recommendations for the future traffic management efficiency to accommodate increase. The findings show that immediate upgrades, such as the construction of new roadways, are essential.
With the progress of sciences and knowledges, the development in the field of earth observation and measurements necessary ones, which helped in overcoming the problem of the time and cost required by field surveys in the division of agricultural land. In this study were recruited technical remote sensing, geographic information systems and field surveys for the purpose of assessing the accuracy of the division of agricultural land for agricultural area located in the eastern part of the Ramadi city as they were deducted from Google Earth. Comparison with the other conventional methods, the use of remote sensing and GIS gives adequate accuracy in the area of the division of agricultural land