Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for limestone

Article
The Influence of Detention Time, Flow Rate and Particle Size in the Removal of "Copper" from Water Using Limestone Filtration Technology -Laboratory Scale—

Adnan Abbas Ali Al-Samawi, Dr. Thair Sharif Kh, Narmeen Abd-Alwahhab

Pages: 40-53

PDF Full Text
Abstract

The concern over increasing needs for drinking water and awareness for development of systems to improve water quality both for drinking purposes and for effluents from wastewater treatment and industrial facilities have provided incentives to develop new technologies and improve performance of the existing one. Adsorption technology has many advantages over other treatment methods such as simple design, low investment cost, limited waste production, etc. Synthetic water with a dosing of artificial copper solution (Cu No3) was passed through a PVC column (15 cm diameter, 100 cm length) containing limestone as a filter media in three different sizes, using three different hydraulic rates, and three initial influent copper concentrations (7.04, 4.39, 1.72) ppm .For this study, three experiments have been conducted; continuous batch and field experiment. The up flow roughing filtration is the suitable technique to recover heavy metals present in aqueous solutions, without the need of adding further substances. The filtration results demonstrated that the smaller size of filter media (3.75) mm gave higher removal efficiency (93.75 – 98.80) % than larger filter media (9.50) mm which gave removal efficiency of (67.61 – 94.0) %. This is due to the large specific surface. The smaller size of limestone achieved the longer detention time (49) min, so the removal of Cu was more than (90) % for the (50) min of experiment. At lower flow rate (0.16) L/min, the removal efficiency was higher than at higher flow rate (0.77) L/min. At high flows, there is a reduced period of surface contact between the particles and copper solution. This study also involved three different batch experiments .The removal efficiency was (93- 97) % for the three types of limestone which indicates the importance of limestone media in the removal process. This also indicates that the removal efficiency was increasing with the increase of the limestone volume. Field experiment has been conducted using wastewater from Al- Dura Electric Station on the three types of limestone so that to ensure the laboratory tests. It was achieved good removal efficiency range from (87.5) % to(97.5) % at the high adsorbent dose .To calibrate the physical model, a computer program of multiple regressions is used to assess the relative importance of the predicted variables. The partial correlations indicate that influent concentration of copper, surface loading (flow rate), and detention time are the most important variables while the size of limestone is not important as others.

Article
Some Properties of Self-Compacting Concrete with Optimum Percentages of Cement Replacement Materials

Tasneem Salah, Mahmoud Al-Ani, Yousif Mansoor

Pages: 19-29

PDF Full Text
Abstract

This paper presents and discuses some properties of self-compacting concrete SCC containing optimum contents of different types of cement replacement materials CRMs like fly ah, silica fume and limestone powder. The purpose is to evaluate the performance of SCC mixtures to choose the best one for strengthening purposes of corroded reinforcement concrete beams. In a preliminary work, the theoretical optimum contents of the above materials were specified using statistical program (Minitab) and they were verified experimentally. This verification based on checking fresh properties such as slump flow, T500, L-box and segregation resistance as well as compressive strength. The optimum contents of CRMs: 14% fly ash, 19% limestone, 18% silica fume plus fly ash and 11% silica fume were selected and studied. Compressive, tensile, and flexural strengths were examined, as well as the modulus of elasticity, water absorption and porosity (which reflect the related durability properties) were examined. Test results show that the optimum verified theoretical percentage of a combination of fly ash and silica fume, at 18% by weight of cement with a fixed water-binder ratio of 0.33 showed the best overall performance. It was deduced that this SCC mix gave the highest mechanical properties and the lowest porosity and water absorption. For example, the compressive strength increased by 36.25% as compared to SCC mix containing limestone powder. Further, the porosity and water absorption decreased by 120.8% and 164% respectively as compared to the above same SCC mix. Thus, it could be used for strengthening purpose of corroded RC beams.

Article
Study the Hydromorphometric Properties of Wadi Jbab in Iraqi western plateau

Sadeq O. Al-Fahdawi, Mashal M. Al-jumaily

Pages: 28-44

PDF Full Text
Abstract

The research aims at revealing the morphometric characteristics of wadi Jbab Basin, which include areal ,relief characteristics, and the shapes of cross- sections of the valley. The hydrological properties of Jbab basin were studied to estimate the amount of water received by its catchment area during rain falls, thus, the appropriate places for the construction of dams and reservoirs for use in water harvesting can be determined. The area under study is located in Iraqi western plateau , between the latitudes of 33º 55' 45"N to 34 º 27' 50" N, and longitudes 41º 24' 30" E to 41º 43' 00" E. Remote sensing technology (RS) and geographic information systems (GIS) were used to reach the objectives of this research, so Digital Elevation model (DEM) for the year 2009 was brought to program (Arc GIS 9.3) and detected the basin and valley of Jbab automatically by using the hydrological analysis method. The area under study is characterized by the drought with a deficit of water in all months of the year where the highest in the month of July, amounting to 324.5 mm and the lowest in January, 10.92 mm. The geological formations prevail formations limestone, with sandy soil to sand-clay mixture, with lack of density in the vegetation. The average slope in basin of Wadi Jbab is 0.25 degree. There are five ranks of river, the sum of their tributaries 676 tributary within an area of 986.6 km ², and its perimeter is 214.3 km , it is also noticed the form of the basin tends to form a rectangle, with three places suitable for the construction of dams and reservoirs depending on the morphometric and hydrologic information that related to the area of research.

Article
Properties of Sustainable Self Compacting Concrete Containing PET Waste Plastic with Various Cement Replacement Materials

Hind abdulminem, Mahmoud Mohammed

Pages: 45-59

PDF Full Text
Abstract

This main aim of this study is evaluate wide range of fresh and hardened properties of sustainable self-compacting concrete containing various types of Cement Replacement Materials with optimum contents of Polyethylene Terephthalate PET waste plastic as fibers and fine aggregate replacement. This is to evaluate effect of the two forms of PET and to determine the best CRMs could be used with sustainable SCC. such as limestone, glass powder and fly ash with high replacement rate of 70% by weight of cement were used while fourth one (kaolin) was used with replacement rate of 20%. PET fibers were added to SCC with an aspect ratio of 24.4 and 0.7% volume fraction whereas fine aggregate partially replaced by 4% of waste plastic. Four reference mixtures contained FA, LP, GP and KA only, same four mixtures contained 0.7% PET fibers by volume, and the other same four mixtures contained 4% PET fine aggregate by volume. The obtained results all tested fresh properties, which include slump flow, T500, L-Box and segregation resistance were within the limits of the specification reported in EFNERC guidelines. Further, the forms PET have an adverse effect fresh properties of SCC. As for hardened properties (compressive strength, splitting tensile strength, flexural strength and impact strength). Further, this produced type of SCC showed an range of compressive strength (15.2-31.64 MPa) at 28 days. It can be from the current study the best CRMs to be used in SCC containing PET wastes was FA in terms of most tested properties.

1 - 4 of 4 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.