Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for numerical-analysis

Article
Experimental and Numerical Analysis of Flexural Behavior of Layered Polyethylene (PET) Fibers RC Beams

Omar Khalid Ali ., Abdulkader I. Al – Hadithi ., Ahmad Tareq Noaman .

Pages: 28-46

PDF Full Text
Abstract

Nonlinear numerical analysis of nine reinforced concrete beams with dimensions (150 x 200 x 1200) width, height and length, respectively, was carried out through the finite element theory using the ANSYS software (version 15) to know the effect of different properties of layers in the one beam on the flexural behavior of reinforced concrete beams. The beams are consisting from two layers for the one cross-section. three beams are similar properties layers and the other six are with different properties layers. The beams differ among them depending on the percentage of Polyethylene terephthalate (PET) fibers added, the location of the fibrous concrete layer as well as the thickness of the layer. PET fibers were added in proportions (0%,0.5%, and 1%) from volume of the one layer, with dimension (50 x 4 x 0.3) mm length, width, and thickness respectively. All beams are reinforced with steel reinforcement (6 mm diameter at the top, 10 mm diameter for reinforcement against shear and 12 mm diameter in the tension area). The mechanical properties of each type of mixture have been studied. It was found that the different properties of the layers significantly affected the flexural behavior of reinforced concrete beams. Also the results of the numerical modeling were very close to the laboratory results obtained from the practical study, where the largest difference between the two studies was 8% and 11% for the load and deflection respectively at the ultimate point    

Article
Analysis of flexural behavior of one-way reinforced concrete slab casted by shotcrete contain various types of plastic fibers

Abdulfatah Jawhar, Yousif Mansoor, Abdulkader Al-Hadithi

Pages: 118-128

PDF Full Text
Abstract

The design of reinforced concrete structures has traditionally relied on empirical techniques based on experience or experimental research on actual structural members. Although this approach produces a high level of precision, it is usually exceedingly costly and time-consuming. This paper studied the convergence between theoretical analysis (ACI 318-19 Equations) and numerical analysis (FEM) of eleven one way reinforced concrete slab specimens casted by shotcrete contains three types of plastic fibers including waste plastic (PET), polypropylene (PP), and hybrid (PET+PP) fibers with three addition ratios (0.35%, 0.7%, and 1%) for each type. The results concluded that the numerical analysis (ANSYS FE model) showed a good agreement with the theoretical (ACI 318-19) of one-way slab in terms of ultimate load, with a variance, and standard deviation equal to 0.00076, and 0.027 respectively. Hence, ANSYS v15 software can be used for the analysis of reinforced concrete slabs casted by shotcrete contain waste plastic fibers and polypropylene fibers.

Article
Study And Evaluation The Optimal Performance Of The Mixing Chlorine Tank In Dhi Qar Wastewater Treatment Plant In Iraq

Ali Hadi GHAWI

Pages: 1-14

PDF Full Text
Abstract

Chlorine contact tank in water and waste water treatment plant suffer from a lack of efficiency disinfected treated water, which discharge to the rivers and they need a large amount of chlorine for the purpose of disinfection as a result of the presence of dead zones in the basins of chlorine as well as the need to contact a long more than exact standard specifications for the tanks disinfection time. This study deal with optimal performance basin mixing chlorine, which is located at the beginning of Chlorine contact tank of waste water treatment plant in the city of Nasiriyah in Dhi Qar, which is located south of the province of Iraq. In this paper, the use of computational fluid dynamic model in the numerical analysis for the purpose of finding the optimum performance of the chlorine mixing tank with the help of the program FLUENT 6.3.26 and program GAMBIT 2.3.16. Also in this study was used User Defined Function for the purpose of improvements of mixing chlorine. Where the results of the study showed that the ideal rotational speed of the mixer is 140 rpm as well as the results showed Numerical Model that can reduce chlorine dose to 5 mgliter, which is the optimum concentration of chlorine to be supplied for wastewater disinfect and is identical to the Iraqi specifications water sanitation, which discharge to the Euphrates River. In this study the best contact time of chlorine which give the best performance for mixing was 20 seconds.

Article
An Experimental Investigation and Numerical Analysis on The Behavior Of Reinforced Concrete Thick Slabs under Static Loading

Yousif Kh. Yousif, Ahmad S. Ali, Adel A. Al-Azzawi

Pages: 32-44

PDF Full Text
Abstract

This paper presents the testing results and numerical results of nine reinforced concrete thick slabs with and without openings. All slab specimens have the same planar dimensions (1000mm×1000mm) with three different thicknesses of (120mm,100mm,and 80mm).The slabs resting on 4 corner steel columns and tested under concentrated static loading up to failure. These slabs were also analyzed using nonlinear finite element method assuming nonlinear material properties. From the experiments, it was found that, The presence of openings in slabs supported on their four corners decreases the strength and rigidity of slabs to about (12-23) % depending on the slab thicknesses and the shape of these openings. The slabs with (circular opening) recorded a reduction in ultimate strength to about(20) % from those with square openings having an equivalent opening areas. The yielding of main steel reinforcement occurred at load about 85% of the slab ultimate load. The ultimate loads predicted by ANSYS model have showed a good agreement with the experimental results.

Article
BEHAVIOR OF MULTI-LAYER COMPOSITE BEAMS WITH PARTIAL INTERACTION "PART I "

Khalel I. Aziz, Zeyad M. Ali, Riyadh I. M. Al-Amery

Pages: 1-18

PDF Full Text
Abstract

ABSTRACT: In this study an attempt is made to develop a method of analysis dealing with a multi-layer composite beam, for linear material and shear connector behavior in which the slip (horizontal displacement) and uplift force (vertical displacement) are taken into consideration. The analysis is based on a approach presented by Roberts[1], which takes into consideration horizontal and vertical displacement in interfaces. The analysis led to a set of eight differential equations contains derivatives of the fourth and third order. A program based on the present analysis is built. Series of three push-out tests were carried out to investigate the capacity of shear stiffness for connectors. From these tests, load-slip curves were obtained. Also, series of multi-layer composite simply supported beams were tested. Each one consists of three layers in different material properties and dimensions. A comparison between the experimental values and numerical analysis is carried out. Close agreement is obtained with experimental values for different materials, layers thickness and shear stiffness.

1 - 5 of 5 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.