Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for polystyrene

Article
إنتاج خرسانة جدیدة خفیفة الوزن مع دراسة بعض خصائصها المیکانیکیة و الحراریة

nan nan

Pages: 22-37

PDF Full Text
Abstract

This research work includes production of new type of light weight concrete and studies the mechanical and thermal properties. Several proportions of raw materials were used to produce this type of concrete. This study is intended to produce light weight concrete with low thermal conductivity so that it can be used for concrete masonry units. Polystyrene aggregate was added as percentages by weight of cement to improve the thermal properties of this type of concrete .Mechanical , and thermal tests with difference ages were made in this work .For polystyrene concrete with polystyrene cement ratio (p/c) of (2.67 – 6 )% , the28-day compressive strength range is from (4.31 – 2.67)MPa, flexural strength range is from (3.05-1.719 ) MPa , density range is from ( 1493-1213 ) kg/m 3 ,and thermal conductivity range is from ( 0.91-0.782)% as a percentage by that of reference mix. The study show suitability of this type of concrete to be used in concrete masonry units of non-bearing walls.

Article
Flexural Strength and Behavior of Reinforced Izocrete Light Weight

Aso A. Faqe Rahim ., Muhamad R. Abdulqadir .

Pages: 22-30

PDF Full Text
Abstract

This study describes the results of tests carried out in order to investigate the structural behavior of reinforced concrete beams containing Expanded Polystyrene (EPS) stabilized Polystyrene beads. Three concrete mixtures were used with densities 350kg/m3, 500 kg/m3 and 600 kg/m3. A total of 12 beams, with control specimens were tested after 28 days of curing immersion in water. Four types of steel reinforcement were utilized: Two ratios of tensile steel reinforcement without compression steel and the same two ratios of tensile reinforcement with compression steel and stirrups. The beams were tested under 4- points loading up to failure. The main variables considered in this study were: different types of Izocrete densities and types of reinforcement steel bars. The results indicated that the amount of polystyrene beads significantly affects the strength of the concrete produced. In general, it can be observed that the compression, tensile and flexure strengths decreased as the EPS beads contents increased, and the moment capacity of the beams reduced with the increase of the beads ratio.The load deflection behavior of the Izocrete beams were similar to other lightweight concrete beams .The failure in most of the beams was initiated at the compression region undergoing large deformation due to the high compressibility of the material.    

Article
Fresh and hardened properties of lightweight self-compacting concrete incorporating with waste plastic and Expanded Polystyrene Beads

Ammar H. Medher ., Abdulkader I. AL-Hadithi ., Nahla N. Hilal .

Pages: 16-21

PDF Full Text
Abstract

The aim of this study is to develop Lightweight self-compacting concrete (LWSCC) mixtures using locally sourced waste materials such as Expanded Polystyrene Beads (EPS) and Waste Plastic Fibers (WPFs) which are all available abundantly available in Republic of Iraq at little or no cost. The fresh, hardened and mechanical properties of these LWSCC were studied, followed by results analysis. Five different mixes of LWSCC were prepared in term of WPF content (0.25, 0.5, 0.75, 1.0, and 1.25 %), in addition to the control mix (R mix) and lightweight concrete (E mix) made of EPS content as a replacement of coarse aggregate. The study showed that the LWSCC produced with these waste materials were decreased the density (lightweight) of the concrete mixes as EPS tend to form more clumps, absorb water and make the mix dry. Therefore, concrete mixtures were adjusted accordingly to be able to offset the workability caused by the addition of EPS. The increase in WPF content decreased the workability due to clumping that occurred in the mixing phase. The analysis of mechanical properties of the LWSCFRC specimens revealed that there was not much improvement. While LWSCC with 100% of EPS replacement as coarse aggregates and 1.25% WPFs provides the best flexural toughness performance    

Article
Producing of eco-friendly lightweight concrete using waste polystyrene particles as aggregates with adding waste plastic

Saad Mohammed, Abdulkader Al-Hadithi, Shamil Ahmed

Pages: 45-56

PDF Full Text
Abstract

This research includes studying the possibility of producing a new kind of No-fines concrete by replacing granules of coarse aggregates with grains results from the fragmentation of industrial waste of polystyrene. This replacing were with different volumetric proportions of coarse aggregate, and theses volumetric ratios were equal to (5%, 10%, 15% and 25%). Waste plastic fibers (WPFs) resulting from cutting of soft drinks bottles were added for strengthening this new kind of concrete. Mixing ratio was equal to (1:5) (cement: coarse aggregate) by weight. One reference mix was produced for comparative purpose. Compressive strength, flexural strength and density tests were conducted, it was examined three samples of each examination and taking the average. Compressive strength values of the new sustainable concrete were ranged from 10 MPa to 12.4 MPa at age of test equal to 28 days, while the average value of the density of this concrete at the same age reaches 1930 kg/m3. This average value of modulus of rupture was equal to 2.36 MPa at 28-day age test.

1 - 4 of 4 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.