Increasing the bearing capacity of shallow foundations is a significant challenge in the urban environment due to increased population growth. This paper presents the bearing capacity of circular foundations encircled by a diaphragm wall. In this study, the effects of diaphragm wall depth (0.5 D, D, 2 D) (D is the foundation diameter) of the foundation on the bearing capacity of the foundation are investigated. Varying relative densities of sand soil (loose, medium, and dense) are utilized. The results of the experimental tests show that the diaphragm wall possesses an influence upon the settlement and the foundation bearing capacity. Where, the capacity of bearing increased as the diaphragm wall depth increased. On the other side, increasing the depth leads to a decrease in the settlement ratio of about 57%. The results of experimental work also demonstrated that the best depth is between D and 2D for all types of relative densities
The difficulty that faces the geotechnical engineers how to find the alternative and effective method to improve bearing capacity and reduce foundation settlement. Therefore, the skirt is considered one of the methods to improving the shallow foundation bearing capacity on different soil. The mechanism of skirt work is confinement soil below the foundation and decrease settlement of the foundation. Soil engineers are worked to devise this method as an alternative to pile foundation for conventional buildings. This paper reviews most of these studies of skirted foundations with different types of soil including laboratory tests, field tests, centrifuge models, numerical method and theoretical analysis; these studies are used in investigation the behaviors skirted foundations.
In this study the behavior of rectangular footing on gypeous soil was studied under inclined and eccentric loading. The experiments were performed using laboratory scale rectangular footing rested on soil taken from Tikrit University site in Salah Al Din province under 3 m depth which has a gypsum content of (50.48 %). The load test was performed on rectangular footing at eccentricity of (e/B= 0, 0.1, 0.2 and 0.3) and an angle of inclination of the load with the vertical ( i= 0°, 5°, 10°, 15°and 20°). The local specifications of the soil are measured (density, moisture, maximum density and optimum moisture content), it is found that that the vertical settlement, horizontal displacement, and base inclination increases with the increasing of eccentricity and inclination of load, the values of bearing capacity that getting in this study was less than of the previous theoretical studies when the load was vertical, and is given a good agreement when load was inclined and field density and moisture of soil. The values of bearing capacity was decreased when the load eccentricity increased because of the effective area became small. It is found that a high settlement occur in footing when a water (unsaturated with gypsum salts) diffuses through the soil, then gypsum become soluble thereby the soil resistance decreases because of rupturing of chemical bond between gypsum and soil.
AbstractA geophysical study using seismic wave velocities data, including compressional and shear wave velocity (Vp and Vs) values, for 14 sites has been carried out. These sites are located within the Mesopotamian plain and surroundings. Both seismic and geotechnical data have been conducted by the National Center for Construction Laboratories and Research (NCCLR) in Iraq. Some geotechnical parameters have been deduced from seismic velocities either from Vp or Vs. Correlations between seismic velocities (Vp and Vs) and geotechnical properties have been derived. These relations show direct proportionalities between Vp and Vs with standard penetration test (SPT-N value). LiuefyPro software has been utilized for two selected Iraqi sites to investigate the liquefaction potential. Input data of the program will be based on those derived from the compressional and shear wave velocities. The application shows a total settlement for saturated and dry sand of 32 mm for the first site while no settlement has been indicated for the second site. It was found that the high value of both wave velocities for a cohesionless fully saturated soil gives an indication that this soil is unable to liquefy and settle under earthquake excitation and vice versa.
Collapse of gypseous soils may cause excessive settlement and serious damage to engineering structures. Various improvement approaches, such as mechanical techniques and chemical additions, have been used to reduce the collapsibility of these soils. The odometer test has traditionally been used to assess the collapsibility of the improved gypseous soils; however, because the small size of test specimens, this method may not adequately reflect field conditions. In this research, a laboratory model test of 600 x 600 x 600 mm with a model footing of 100 x 100 mm was developed to measure the collapse characteristics of a gypseous soil. The top layer underneath the footing was improved by compaction, cement kiln dust (CKD), geogrid, and a combination between CKD and geogrid. The top layer was improved at two values of thickness of 50 and 100 mm. The results obtained from this study indicate that the values collapsibility settlement reduction factor for compacted soil and the soil treated with CKD were 75 and 82%, 89% receptively. These values increased up to 95 % when a combination of CKD and geogrid was applied. As discussed herein, the aforementioned treatment methods can effectively be used to improve the collapsibility of gypseous soils.
In this paper, a practical method of analysis of the pile displacements is proposed on the basis of the theory of load-transfer curves widely used in pile design and analysis. The parameters of the load-transfer curves for piles under axial load (called t-z, q-z curves) or lateral load (called P-Y curves) were correlated with the number of blows Nspt measured during the standard penetration test (SPT). Well documented case histories of full-scale axial or lateral loading tests on single piles in sand were collected, and the analysis of the experimental results led to define the parameters of the load-transfer curves. Two practical methods of computation of a single pile under an axial load or a lateral load were proposed to be used within the scope of a pile foundation project. At last, a validation process of the load-transfer curves was undertaken by direct comparison of the predicted pile displacements to those measured during other pile loading tests, which showed a good predictive capability of the two proposed methods