Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for stress

Article
Stress-Strain Relationship for Steel-Fiber Reinforced Polymer Modified Concrete under Compression

Dr.Abdulkader Ismail Al- Hadithi, Ameer Abdulrahman Al- Dulaimy, Dr .Saeed Khalaf Rejib

Pages: 19-30

PDF Full Text
Abstract

The present study, concern about an experimental work to study the stress-strain relationship of steel-fiber reinforced polymer modified concrete under compression. Four different mixes with weight proportions of (1:2:4) were used as; normal weight concrete (NC), polymer modified concrete (PMC) with (10%) of cement weight and two mixes of steel-fiber polymer modified concrete with (1%) and (2%) volume fraction of steel fiber, (SMPC). The influences of polymer and fiber addition on peak stress, strain at peak stress and the stress-strain curve were investigated for concrete mixes used. For all selected mixes, cubes (150×150×150mm) were made for compressive strength test at (28) days while stress-strain test was caried out on cylinders (150 mm  300 mm) at the same age. Results showed an improvement in compressive strength of polymer modified concrete (PMC) over reference mix, the maximum increase of it was (13.2 %) at age of (28) days. There is also an increase in compressive strength with increasing of steel fibers content with comparison to normal concrete, the maximum increases of it were (19.6% and 25.2%) of mixes with 1% and 2% fiber content by volume respectively. In terms of modulus of elasticity, the addition of polymer and the presence of fibers cause a significant increase in it. The peak of stress- strain curve for normal strength concrete (Mix No.1) was linear whereas it was more sharp for the other mixes. The behaviour of normal strength concrete (Mix No.1) was linear up to 20 % of ultimate strength, while for the mixes with the higher strength i.e. polymer modified concrete and fibers reinforced concrete (Mixes No.2, 3 and 4) the linear portion increases up to about 50 % of ultimate strength

Article
Hyperbolic stress-strain parameters for non-linear Finite Element Analyses of stone column constructed in soft soil

Shlash K. T

Pages: 112-122

PDF Full Text
Abstract

Abstracte: The stress-strain behavior of any type of soil depends on a number of different factors including density, water content, structure, drainage conditions, strain conditions (i.e., plane strain, triaxial), duration of loading, stress history, confining pressure, and shear stress. In many cases it may be possible to take account of these factors by selecting soil specimens and testing conditions which simulate the corresponding field condition. Even when this can be done accurately, however, it is commonly found that the soil behavior over a wide range of stresses is nonlinear, in elastic, and dependent upon the magnitude of the confining pressure employed in the tests. In order to perform stress analysis of soils, it is desirable to employ techniques, which account for these important aspects of soil behavior.

Article
ESTIMATION OF HYPERBOLIC STRESS-STRAIN PARAMETERS FOR GYPSEOUS SOILS

Ahmed Helal, Ahmed H. Abdul-kareem

Pages: 1-15

PDF Full Text
Abstract

The hyperbolic model is a simple stress-strain relationship based on the concept of incrementally nonlinear elastic behavior. The hyperbolic stress-strain relationship was developed for use in finite element analysis of stresses and movements in earth masses. To estimate hyperbolic parameter values required for nonlinear finite element analysis, data used from the triaxial compression tests for the gypseous soils exposed to the effect of drying and wetting cycles carried out by (Mohammed, 1993). From these data, the parameters (C, φ, K, n, Rf), which are required by Duncan-Chang model, 1970 can obtained for analyses of dams, excavations and various types of soil-structure interaction problems. In addition, it can be found that the primary loading modulus, K, the exponent number, n, and the failure ratio, Rf, have random values during rewetting cycles for CU and UU triaxial compression tests

Article
Stress Strain Relationship of Polymer Modified No-Fine Concrete

Bayan S. Al-Numan

Pages: 54-79

PDF Full Text
Abstract

Abstract The use of no fines concrete in construction increased especially during and after 1970s. New concrete is obtained from no-fines concrete in this research by adding Styrene Butadiene Rubber (SBR) Polymer as a ratio of cement content. This research includes the study of the effect of SBR polymer on stress-strain relationship of concrete under compression. The concrete mixes by weight were (1:7, 1:6, 1:5, and 1:4) cement / aggregate (C/A). The polymer was added as percentages by weight of cement as (5, 7.5 and 10%). Rreference mixes were made for every case. A new mathematical model for both ascending and descending portions is suggested in this research and discussed. The area under the stress strain curve was found in polymer modified no-fines concrete to be greater than reference concrete and was increased with polymer / cement ratios (P/C). The suitability of no fine polymer concrete to be used in structural members has been affirmed in this research especially for (1:4 and 1:5) C/A polymer mix.

Article
Analysis of Pretensioned Partially Prestressed Concrete Beams

nan nan, nan nan

Pages: 27-32

PDF Full Text
Abstract

AbstractDeflection of partially prestressed concrete beams is investigated using the finite element method taking in to account the plasticity of steel, nonlinearity of concrete in compression and tension softening of concrete. Embedded bar approach is used to represent the steel reinforcement and prestressing tendon in concrete layer. Elastic perfectly-plastic approach has been employed to model the compressive behaviour of the concrete.The yield condition is formulated in terms of the first two-stress invariants. The movement of the subsequent loading surfaces is controlled by the hardening rule, which is extrapolated from the uniaxial stress-strain relationship defined by a parabolic function. Concrete crushing is a strain controlled phenomenon, and can be monitored by a fracture surface similar to the yield surface. A smeared fixed crack approach is used to model the behaviour of the cracked concrete, with a tensile strength criterion to predict crack initiation. The steel is considered as an elastic perfectly plastic material with linear strain hardening, steel reinforcement is assumed to have similar tensile and compressive stress-strain relationship. The calculated and the observed effects have shown a satisfactory agreement compared with experimental results.

Article
ANALYSIS OF EMBANKMENT ON GYPSEOUS SOILS

Ahmed H. Abdul-Kareem

Pages: 60-78

PDF Full Text
Abstract

ABSTRACT:The gypseous soils are distributed in many regions in Iraq and other countries. Therefore, it is necessary to study the behavior of such soils due to the large damages that affects the structures founded and constructed in or on it.This research is concerned with studying the effect of leaching soil process on the stability of an embankment erected on foundation gypseous soil. The finite element method is adopted in this research. The analyses carried out using a nonlinear, increment, and stress-dependent finite element computer program. The hyperbolic stress-strain parameters used in the finite element analyses are estimated by the data collected from triaxial compression tests of some researchers. The analysis of the embankment problem carried out, shows that the leaching process for foundation gypseous soil increases the displacements and deformations of the embankment and its foundation. Finally, this research necessitate the success using of the finite element method in design and analyses of the important structures and buildings erected on gypseous soils that may expose to the effect of leaching process. This means that there is possibility to predicate the behavior of structure by a powerful means to establish the suitable solutions for any problems that may be occurred as a result of the present gypseous soil.

Article
ANALYSIS OF STONE COLUMN IN SOFT SOIL BY FINITE ELEMENTS METHODS

Ahmed A. Al Hity

Pages: 27-41

PDF Full Text
Abstract

This paper includes an analysis to asses the behavior of stone columns using the finite element method and to provide bases and information helping geotechnical engineers to design foundations resting on weak soils reinforced with stone column. The axisymmetric quadrilateral element is adopted in the finite element program to simulate the soft soil and the stone column while the one-dimensional element is used to simulate the soft soil and the stone column-soil interface. The nonlinear inelastic stress-dependent model is used to simulate the behavior of the soil and the interface throughout the incremental loading stages adopting nonlinear parameters obtained from triaxial and direct shear stress. The analysis is carried first on a selected basic problem, to clarify the nonlinear of the column, in which a selected geometry, boundary condition, and material properties for both soil and interface as chosen. The rest of the analysis is grouped into the effect of some of the parameters concerning the geometry of the stone column and the material of column and adjacent soil are investigated. It was found that the increase in stone column length and in relative stiffness of stone column material to soil play an important role in increasing ultimate capacity of the stone column and in reducing settlements.

Article
Optimum Analysis and Design of Curved Concrete Dams

Ayad Abdul Hammed Sulaibi ., Noor Waleed awaid Al-kubaisy .

Pages: 32-51

PDF Full Text
Abstract

This research presents an efficient strategy to find optimum analysis and shape design for arch dams. Where the design geometry is built using (Solid Work Program), which is considered as one of important programs for analysis and design of complex structures. A finite element method is used to analyze the arch dam body, which is proved to be an important method for analysis and gives accurate results according to previous researches. The design of the basic shape of the dam has been done by using horizontal curve and vertical curve equations. After conducting the analysis and design of the initial model by (SolidWork) program, it was transferred to the second phase. This is the shape optimization process by using (Genetic Algorithm) in (Matlab) program. This method is an efficient method for all optimization problems in different branches. The objective function in this research is the minimum volume of the dam, which leads to minimum weight design. There are many constraint controls the selecting of optimum shape. In this work, geometrical and structural constraints are considered. At this stage, to calculate the volume of the dam body, integration method is used to convert the volume in terms of the design variables (tc1, tc2, and tc3) which represent the thickness of the dam at three levels. Then this equation has been moved to (Genetic Algorithm tools) using (m-file) to complete the optimization process. The results show that the best design shape of the dam is with thicknesses (5.5m, 13.3m, and 19.8m) with a final optimal volume of53.75% less than the initial model and the stress is still less than the allowable limits    

Article
Reinforcement of sandy soil using plastic fibres made from waste plastic bottles

Younis M. Alshkane

Pages: 45-54

PDF Full Text
Abstract

Today waste plastic bottles are spread widely throughout our world especially in Kurdistan, an autonomous region in Iraq. These waste products cause many environmental problems and at the same time some soils are weak and need reinforcement using cheap materials such as Polyethylene terephthalate (PET) waste plastic bottle. Use of waste plastic bottles as a reinforcement of soil is highly recommended to reduce the amounts of plastic waste, which creates a disposal problem. In this study an attempt was made to use plastic fibres produced from waste bottles to reinforce sandy soil. This can solve both environmental and geotechnical problems. In the research, the effect of plastic fibres content as well as fibre length on shear strength parameters (cohesion and internal friction) were experimentally predicted using the direct shear test method so as to improve bearing capacity of weak soils. The results showed that under low normal stress the inclusion of plastic fibres increased both angle of internal friction and cohesion; however, under high normal stress (greater than 100 kPa) the cohesion increased and the internal friction was roughly unchanged. Also, it was concluded in this study that the suitable amount of fibers that can be added to weak soils is 1% of dry weight of sand.

Article
Experimental investigation and FEA of AlMg3-stiffened rectangular plate subjected to concentrated load

Mohammed Midhat Hasan, Mazin Yaseen Abbood

Pages: 101-109

PDF Full Text
Abstract

In this paper, AlMg3-plates are studied through experimental and numerical using finite element representation under concentrated load at the center point. The plates of (300- × 200 mm) are clamped at the shorter ends and strengthened longitudinally by one rib at the centerline and two at different spans. the stiffened plates were modeled using a 3-D 10-node tetrahedral element with a non dimensional analysis. The models were validated using the results of tests on full-size stiffened plate specimens and were subsequently used to perform the study of the parameters presented in this paper. The parameters investigated are: the maximum stress, deflection of the plate and the position of ribs. Effect of the investigated parameters on the concentrated load strength were studied within elastic range. FEA give closer results with those of experimental and these results show that the use of two parallel ribs with a 40-mm span improves the strength of the plate. Due to these results, further investigation is presented to show the optimum thickness of the ribs at the best span.

Article
Devise a mathematical model to represent the sediment at Al Anbar Thermal Power Station Outlet using GIS

Ahmed Amin Al Hity

Pages: 37-56

PDF Full Text
Abstract

This research aims to study sediment discharges in Al Anbar Thermal Power Station in two phases the first phases include a follow-up study sediment load from the river by taking samples at different depths and different discharges, and noted measurements, calculations for each section while the second phases included an account of the tonnage of river sediment through the program depends on the equation of Meyer, to five sections (18, 26, 35.43, 45) with the observation results and do a comparison between the two phases. Research has included also employ technology of remote sensing and geographic information system GIS in the study of the waters of the Euphrates at thermal power plant after an analytical study was taken amount sediment and size in the study area and then link results with the geographic information system GIS for the purpose of producing layers represent the nature of the spatial distribution of these Sediments on the entire study area and the aerial imagery of software Google Earth with the use of the program (Arc view), one of the geographic information system software. The research concluded give recommendations for controlling the movement of sediment when the at Al Anbar Thermal Power Station Outlet through two main axes of them increase the flow velocity exceeds the critical velocity and the other includes the disposal of sediments away from the site of the station outlet.

Article
Evaluation of the Performance of the Circular Foundation Surrounded by the Diaphragm Wall

Khalid Abd Al-kaream, Ahmed Abdulrasool, Mudhafar Hameedi, Zainab Shaker

Pages: 10-18

PDF Full Text
Abstract

Increasing the bearing capacity of shallow foundations is a significant challenge in the urban environment due to increased population growth. This paper presents the bearing capacity of circular foundations encircled by a diaphragm wall.  In this study, the effects of diaphragm wall depth (0.5 D, D, 2 D) (D is the foundation diameter) of the foundation on the bearing capacity of the foundation are investigated.  Varying relative densities of sand soil (loose, medium, and dense) are utilized. The results of the experimental tests show that the diaphragm wall possesses an influence upon the settlement and the foundation bearing capacity. Where, the capacity of bearing increased as the diaphragm wall depth increased. On the other side, increasing the depth leads to a decrease in the settlement ratio of about 57%. The results of experimental work also demonstrated that the best depth is between D and 2D for all types of relative densities

Article
Nonlinear Three-Dimensional Finite Element Analysis of Reinforced Concrete Dapped-End Beams

A. Mohammed

Pages: 1-16

PDF Full Text
Abstract

This paper deals with the nonlinear finite element analysis of two shear-critical concrete dapped-end beams. Reinforced concrete dapped-end beams having nominal shear span to depth ratio values of 0.56 and 0.59, concrete strength 32MPa and 34MPa, and reinforcement ratio via yield strength 2.83MPa and 7.39MPa, that failed in shear have been analyzed using the ‘ANSYS’ program. The ‘ANSYS’ model accounts for the nonlinearity, such as, post cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of concrete. The concrete is modeled using ‘SOLID65’- eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The internal reinforcements have been modeled discretely using ‘LINK8’ – 3D spar element. A parametric study is also made to explain the effects of variation of some main parameters such as shear span to depth ratio, concrete compressive strength, and the parameter of main dapped-end reinforcement on the behavior of the beams. From the present modality the capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in reinforced concrete dapped-end beams have been illustrated. The parametric study shows that the beams shear strength is affected by the shear span to depth ratio, concrete compressive strength and the amount of main reinforcement.

Article
Finite Element Simulation of the Bearing Capacity of an Unsaturated Coarse-Grained Soil

Mohammed Y. Fattah, Khalid R. Mahmood, Muataz M. Muhyee

Pages: 17-28

PDF Full Text
Abstract

The mechanical behaviour of partially saturated soils can be very different from that of fully saturated soils. It has long been established that for such soils, changes in suction do not have the same effect as changes in the applied stresses, and consequently the effective stress principle is not applicable. A procedure was proposed to define the soil water characteristic curve. Then this relation is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H-modulus function. This procedure is utilized in the finite element analysis of a footing on unsaturated coarse grained soil to investigate its bearing capacity. The finite element results demonstrated that there is a significant increase in the bearing capacity of the footing due to the contribution of matric suction in the range 0 to 6 kPa for the tested compacted, coarse-grained soil. The ultimate pressure increases from about 120 kPa when the soil is fully saturated to about 570 kPa when the degree of saturation becomes 90%. This means that an increase in the bearing capacity of about 375% may be obtained when the soil is changed from fully saturated to partially saturated at a degree of saturation of 90%. This development in the bearing capacity may exceed 600% when the degree of saturation decreases to 58%.

Article
Evaluating the cracks of Highway Tunnel Concrete Lining by Using a Fuzzy Inspection System

Yousif Abdulwahid Mansoor

Pages: 9-15

PDF Full Text
Abstract

In the civil engineering, the prediction of cracks for tunnel lining is too hard because it depends by different factors for example concrete strength, tunnel operation conditions, stress and geological surroundings. The aim of this study is to design a Fuzzy inspect System (FIS) for evaluating the concrete cracks of tunnel lining. Fuzzy logic is a method to signify a type of uncertainty which is understandable for user. The system has been designed to meet permit crack formula that issued in “Highway Tunnel Design Specifications”. When the maximal permit crack width as example is chosen as 0.7mm, 1.2mm and 3.3mm separately the fuzziness set accordingly is Minor , moderate and severe. The average error for the predicted crack (element sample) in FIS is 8.34%. The fuzzy evaluation model is based on the information of a real in-service PESHRAW highway tunnel, which reflects field status. Therefore, this evaluation is comfortable.

Article
LEACHING EFFECTS ON SOME PROPERTIES OFSANDY GYPSEOUS SOILS

Muayad A. Ahmed Al-Sharrad

Pages: 79-89

PDF Full Text
Abstract

A BSTRACT: Leaching effects on permeability and compressibility characteristics of undisturbed sandy gypseous soil were investigated in this study. Time, stress level, strain, leachate condition and flow velocity were considered. The loading, leaching and permeability measurements were carried out utilizing the constant head pereameter with special modifications. Test results show that salt leaching and thereby leaching strain is a time dependent process. Also as leaching strain continued coefficient of permeability decreases.

1 - 16 of 16 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.