Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for water-quality

Article
Assessment of Groundwater Quality at Selected Location of three Wells and Al-Warrar Canal, Ramadi City, Iraq.

Reaam Abood, Ayad Mustafa, Jumaa Al Somaydaii

Pages: 1-7

PDF Full Text
Abstract

To classification groundwater quality in the study area, three wells were drilled at a depth of 10m and selected two locations across Al Warrar Canal to represent their water quality. Water samples were collected from these wells and the Warrar Canal to examine water quality. Then results were compared against the World Health Organization (WHO) limits to study the Index of Water Quality (WQI). WQI was calculated according to the Canadian Council of Ministers of the Environment (CCME), and the quality of water was evaluated for domestic and irrigation uses. The samples were tested for electrical conductivity, pH, temperature, total dissolved solids, chloride, total hardness, nitrate, and alkalinity according to the standard methods. The results of laboratory analysis showed significant differences among the wells and Warrar Canal water quality in the measured parameters according to WHO limits. Due to many human activities like urbanization, agrarian overflow, drainage of untreated sewage, and industrialization, high values of trace elements and heavy metals were recorded in wells three. For agriculture purposes, the results show that the water in the three wells is very high salinity, where the Warrar Canal is high salinity, and Canal water causes saline and alkali damages. It was recommended that the WQI in three wells was poor water quality whereas, marginal water quality was pointed in AL Warrar Canal.    

Article
Suitability of Surface Water for Drinking purposes in Basrah City Using Water Quality Index (WQI)

Ayman Alak Hassan

Pages: 86-95

PDF Full Text
Abstract

The water quality index (WQI) is applying for the integrating the water quality variables into a single number to indicate the overall quality of water. Rivers is one of the essential water resources, the protecting and preserving for the quality of this resource is important and imperative. An evaluation of water characteristics of the Shatt Al Arab River in Basrah city was performed in order to determine the quality of water for drinking usage. In this research, monitoring of variation in the characteristics of water was accomplished by collecting monthly water samples for three years. The water samples from the Shatt Al Arab River is analyzed for eight Physical and chemical parameters such as pH, total dissolved solids (TDS), electrical conductivity (EC), total hardness (TH), calcium (Ca), magnesium (Mg), sulphate (SO4) and chloride (Cl) using standard methods. Utilizing the WQI discovered that the water quality of the studied river is ranked between very poor water type and not suitable water for drinking usage category. In the present investigation, the quality of water was revealed that the average of WQI value for the studied years was 318, 337.3 and 456.7, respectively.

Article
Evaluation of Tigris River Water Quality in Selected Sites within Baghdad City

Shaimaa Taleb Kadhum

Pages: 54-62

PDF Full Text
Abstract

The present research focuses on the evaluation of the Tigris river water quality within the city of Baghdad. Thirty samples were collected monthly from ten sites (each site contains three positions center of river, Rasafa side, Karkh side) on the Tigris river within Baghdad city along one year (from Feb.2010 to Feb. 2011). Samples were analyzed for eleven water quality variables including physical, chemical, and biological parameters. The results showed increases in pH, TDS, TSS, Cl-1, SO4-2, and BOD values in some of the sites through study area, but all values remain within the allowable Iraqi and WHO limits except of SO4-2, it was exceeded the allowable limits in multiple sites.

Article
Application of QUAL2K for Water Quality Modeling and Management in the lower reach of the Diyala river

Ayad S. Mustafa, Sadeq O. Sulaiman, Sabreen H. Shahooth

Pages: 66-80

PDF Full Text
Abstract

The current study includes application of QUAL2K model to predict the dissolved oxygen (DO) and Biochemical Oxygen Demand (BOD5) of lower reach of the Diyala River in a stretch of 16.90km using hydraulic and water quality data collected from Ministry of Water Resources for the period (January-April 2014). Google Earth and Arc-GIS technique were used in this study as supported tools to provide some QUAL2K input hydro-geometric data. The model parameters were calibrated for the dry flow period by trial and error until the simulated results agreed well with the observed data. The model performance was measured using different statistical criteria such as mean absolute error (MAE), root mean square error (RMSE) and relative error (RE). The results showed that the simulated values were in good agreement with the observed values. Model output for calibration showed that DO and CBOD concentration were not within the allowable limits for preserving the ecological health of the river with range values (2.51 - 4.80 mg/L) and (18.75 – 25.10 mg/L) respectively. Moreover, QUAL2K was used to simulate different scenarios (pollution loads modification, flow augmentation and local oxygenation) in order to manage the water quality during critical period (low flow), and to preserve the minimum requirement of DO concentration in the river. The scenarios results showed the pollution loads modification and local oxygenation are effective in raising DO levels. While flow augmentation does not give significant results in which the level of DO decrease even with reduction in the BOD5 for point sources. The combination of wastewater modification and local oxygenation (BOD5 of the discharged effluent from point sources should not exceed 15 mg/L and weir construction at critical positions 6.67km from the beginning of the study region with 1m height) is necessary to ensure minimum DO concentrations.

Article
Under ground water Assessment in Diyala Bridge Area

کمال برزان ندا ., غفران فاروق جمعة ., احمد عبد الله .

Pages: 30-37

PDF Full Text
Abstract

Severe Shortage and bad quality of Surface water in the area of Diyala Bridge , added to the growing demand for drinking , irrigation and sanitary waters , leads to study and qualify the under ground water in this area , Six shallow wells has been selected to the east of Diyala river , five of them where on shore and the sixth was far away from river about ( 3 km) .The depth of these wells was (10- 14)m . Tests of ( Ph , TDS , BOD , Turbidity , Conductivity ,----etc) where performed during March , June, Aug. in 2008. Heavy metals such as ( Pd , Zn , Cd , Fe , Mn ) has been examined as well . Results of physical , chemical and bacteriological tests show that the water quality of these wells were not comply with WHO requirements ,as well as results show considerable increased concentrations in TDS,BOD and heavy metals which indicates that underground waters were highly polluted with the sanitary waste waters . On the other hand the on shore wells' water quality was very close to the river water quality in comparison with the well in the middle of the town.

Article
Suitability of groundwater of Dabaa region –Iraqi western desert for agricultural use

Abdulkarem Ahmad M.Al-alwany

Pages: 24-32

PDF Full Text
Abstract

The study included evaluating water ten wells in the area Dabaa within the western region of Iraq for agricultural use, as has been the study of water quality of these wells during the year by conducting a full analysis of water samples and assess suitability for irrigation depending on the standard specifications of the Food and Agriculture Organization. As the analysis results showed that all the studied wells located within the water of light to moderate in terms of the seriousness of Electrical conductivity if used for irrigation, and sodium adsorption ratio values for all water wells studied were within the Has no influence soil permeability. It turned out that the Toxic Effect of these water plants were mild to moderate effect for sodium either chloride was degree selection of non-toxic to light moderate, and that the use method Piper for the classification of water showed that it quality predominantly Na+, Mg +2, Ca+2 - Mg+2 , Ca+2 for positive ions and water quality sulphurous HCO3-, SO4 = predominantly basal in terms of negative ions.

Article
Influence of Mix Water Quality on Compressive Strength of Making Concrete

Sheelan Mahmoud Hama ., Ibtihal A. Mawlood ., Nahla N. Hilal .

Pages: 19-22

PDF Full Text
Abstract

The influence of concrete mixing water quality on the compressive strength of concretes was investigated in this study. During the study, the compressive strength (CS) of the concretes was determined at 7, 14, and 28 days age. This study used 8 types of water of varying qualities as concrete mixing water (water with 71 UTN impurity level, water with 250 UTN impurity level, water with 1000 UTN impurity level, well-sourced water, acidified water, and alkaline water). Potable water was used as reference water. The results indicated that the lowest CS has been obtained by using alkaline water at a concrete age of 7 days while the usage of water with 250 UTN impurity level as a concrete mixing water yielded the highest CS. in addition, the lowest CS has been obtained when using a mixing water of alkaline at a concrete age of 14 days while the highest CS resulted from using water with 71 and 250 UTN impurities levels. Furthermore, the usage of water with 71 UTN impurities level and an acidic water as a concrete water mixing gave the lowest CS at twenty eight days concrete age, while using magnetic water and water with 250 UTN impurities as concrete mixing water resulted in the highest CS. The use of water with 250 UTN impurities as concrete mixing water favored CS development at all concrete ages. These obtained results have shown a various effects of different impurities which significantly indicate that only a few water impurities affect the concrete’s CS seriously..    

Article
تقییم نوعیة میاه الشرب وکفاءة محطة تصفیة ماء الفلوجة

nan nan, nan nan, nan nan

Pages: 27-38

PDF Full Text
Abstract

In the circumstances interface Iraq wars and a lack of public services to citizens, water remains the most important requirements of daily life and must be accorded primary importance by ensuring that the processing of citizens with drinking water quality and conformity with the standard specifications, and that can be done not through the presence of plants To treat drinking water with high efficiency. In this research study of the Show a water Fallujah, which consists of the traditional liquidation of most water stations in Iraq , sedimentation and filtration and sterilization, has been studying each stage of the three phases through the collection of information and testing of each phase, has found that the plant Efficient (57%) of a deposition, and the efficiency (50%) of the nomination phase and the efficiency (40-90%) in the sterilization stage, within the World Health Standards for water quality characteristics , PH was equal to( 6.7), and equal to (3 turbidity unit international) turbidity, and electrical Alaissali (1100 μs/cm ), and the total salt concentration of TDS equal to (530mg/L) for drinking water out of the station, The concentration of suspended solids (40 mg / L) are not in conformity with the specifications

Article
The Influence of Detention Time, Flow Rate and Particle Size in the Removal of "Copper" from Water Using Limestone Filtration Technology -Laboratory Scale—

Adnan Abbas Ali Al-Samawi, Dr. Thair Sharif Kh, Narmeen Abd-Alwahhab

Pages: 40-53

PDF Full Text
Abstract

The concern over increasing needs for drinking water and awareness for development of systems to improve water quality both for drinking purposes and for effluents from wastewater treatment and industrial facilities have provided incentives to develop new technologies and improve performance of the existing one. Adsorption technology has many advantages over other treatment methods such as simple design, low investment cost, limited waste production, etc. Synthetic water with a dosing of artificial copper solution (Cu No3) was passed through a PVC column (15 cm diameter, 100 cm length) containing limestone as a filter media in three different sizes, using three different hydraulic rates, and three initial influent copper concentrations (7.04, 4.39, 1.72) ppm .For this study, three experiments have been conducted; continuous batch and field experiment. The up flow roughing filtration is the suitable technique to recover heavy metals present in aqueous solutions, without the need of adding further substances. The filtration results demonstrated that the smaller size of filter media (3.75) mm gave higher removal efficiency (93.75 – 98.80) % than larger filter media (9.50) mm which gave removal efficiency of (67.61 – 94.0) %. This is due to the large specific surface. The smaller size of limestone achieved the longer detention time (49) min, so the removal of Cu was more than (90) % for the (50) min of experiment. At lower flow rate (0.16) L/min, the removal efficiency was higher than at higher flow rate (0.77) L/min. At high flows, there is a reduced period of surface contact between the particles and copper solution. This study also involved three different batch experiments .The removal efficiency was (93- 97) % for the three types of limestone which indicates the importance of limestone media in the removal process. This also indicates that the removal efficiency was increasing with the increase of the limestone volume. Field experiment has been conducted using wastewater from Al- Dura Electric Station on the three types of limestone so that to ensure the laboratory tests. It was achieved good removal efficiency range from (87.5) % to(97.5) % at the high adsorbent dose .To calibrate the physical model, a computer program of multiple regressions is used to assess the relative importance of the predicted variables. The partial correlations indicate that influent concentration of copper, surface loading (flow rate), and detention time are the most important variables while the size of limestone is not important as others.

Article
Concentration of Residual Chlorine in Tikrit University Water Supply Network

عفاف جدعان عبید .

Pages: 18-29

PDF Full Text
Abstract

Chlorine is considered as one of the most important disinfectants because of its availability in a wide form and in acceptable cost. Measurements of residual chlorine are very essential to assure the presence of disinfection at various locations of the water distribution system. The aim of the present work is to find the residual chlorine concentrations in potable water which leaves Tikrit University water supply plants. pH-, water temperature and water turbidity are also measured. Sixty samples of tap water are tested during November 2009 till April 2010. The results show that range of residual chlorine is 0.2-4mg/l) and most of the measured values are higher than the maximum permissible limit according to Iraqi standards( 417/1974 ) The data indicated that pH is within the range of (7-8.2) and there is no clear relationship between pH and residual chlorine concentration. It is found that there an inverse proportionality between residual chlorinean and temperature . Same trend is found between residual chlorine and turbitiy. The Conductivity and total dissolved solid of drinking water was within the permitted level by the Iraqi standers

1 - 10 of 10 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.