This study presents an investigation of the mechanical properties of normal concrete reinforced with discarded steel fibers (DSFs) resulting from tire manufacturing. DSFs were added to concrete in two different volume fractions of (0.25 %, and 0.5 %), and these fibers have dimensions of (40 mm length×0.92 mm diameter). The results showed that the compressive strength of the concrete was enhanced by (8.8%, and 3.3%) by adding of DSFs. However, the workability of concrete decreased at all added ratios. While the density is slightly changed. Also, the results indicate that the modulus of elasticity shows slight increases by (3.06%, and 2.25%). Additionally, the incorporation of DSFs improves the splitting tensile strength and modulus of rupture significantly. For concrete mixes having volume fractions of 0.25% and 0.5%, the splitting tensile increased by (7.89%, and 23.68%), and the modulus of rupture increased by (6.67% and 25.58%), respectively. It was concluded that using this type of discarded fibers can improve the mechanical properties of concrete as an alternative type for other types of industrial fibers.
Fresh and hardened properties of self-compacting concrete was experimentally examined by replacing different percentages of cement by soft clay powder, which resulting from crushing the wastes of clay bricks. Three percentages (5%, 10%, and 15%) of cement were replaced with clay powder to study their effect on the properties of cement mortar and concrete of Grade (C35) in both fresh and hardened states. It was found that development rates of the compressive and tensile strengths for the mortar between ages of 7 to 28 days, decreased with increasing the percentage of the clay powder. Compared to the mix without clay powder, it was found that replacing (5%) from the cement causes a significant increase in the workability of the self-compacting concrete and the properties of the resulting hardened concrete such as compressive strength, tensile strength, and modulus of elasticity. While using (10%) and (15%) of the clay powder causes a significant decrease in the workability of the fresh concrete and the properties of the hardened concrete compared to mix without clay powder.
1-AbstractThis research includes the variation effect of (W/C) water: cement ratio on the properties as compressive strength , flxural strength , density and workability of concrete contains low Polymer SBR ratio.1:2:4 (cement: sand :gravel) by weight mixes were used . The polymer was added as percentages of cement weight and it was 2%. Reference mix was made. Water cement ratio (w/c) were used are 0.2 , 0.3 , 0.4 , 0.5 and 0.6 respectively and 0.35 (w/c) was used for reference mix . The density of concrete varied between 2030 kg/m3 and 2360 kg/m3.