Polyethylene terephthalate (PET) fiber is a green-friendly fiber that is capable of enhancing the mechanical properties of wet-mixing shotcrete. The main purpose of this study is to see how varied volumes of waste plastic fibers (WPF) affect the flowability and mechanical properties of wet-mix shotcrete. For this aim, a variety of experimental tests based on WPF content were chosen. Fresh and mechanical tests included slump, T500, density, compressive strength, and splitting strength were applied. The results shown a improved in shotcrete performance as the WPF content increased. Among all fitting correlations, density and compressive strength revealed the strongest linear ship association. Due to greater interlocking between WPF and concrete matrix, WPF was a major use in enhancing splitting tensile strength. WPF had the most influence on splitting strength, with 23–31 percent, 7–23 percent, and 6–38 percent for 7, 14, and 28-day, respectively.
This study program has been conducted to investigate the influence of adding waste plastic fibers (WPF) resulting from manual cutting for bottles used in the conservation gassy beverage on different characteristics of ordinary concrete. Cutting plastic waste by volumetric rates ranging between (0.5%) to (2%) was approved. Reference mix was produced for comparison. Tests were conducted on the models produced from waste plastic fiber concrete like compressive strength, flexural strength and splitting tensile strength. The analysis of the results showed that the use of plastic waste fibers (1%) has led to improve the properties of flexural strength and splitting tensile strength compared with reference concrete .When the( 0.75%)WPF ratio improved the compressive strength as compared with the control specimen . Compressive strength in (28 days) with fiber ratio (0.75%) WPF is higher than equal (5.1%) from compressive strength in (28 days) of reference concrete. Volumetric ratio (1%) WPF can be also observed that each of the flexural strength and splitting tensile strength increases equal (12.5 and 12.5%) respectively, from flexural strength and splitting tensile strength for the reference mix at(28day).
This research include the study of flexural behavior of polymer modified concrete beams containing waste plastic fiber (WPF). Fifteen reinforced concrete beams are moulded of (100*150*1300) mm dimension with different steel reinforcement ratio (ρ). These steel reinforcement ratio were (0.0038, 0.0207 & 0.0262). Styrene Butadine Rubber (SBR) was added as cement replacement by weight equal to (5%). Reinforced concrete beams classified in to five groups, each contains three beams with different (ρ) value. The first group conducted of reference concrete mix , the second group made with SBR modified concrete, while the three remaining groups were make by PMC containing (WPF) with volumetric ratio equal to (0.75, 1.25 & 1.75)%. This study includes compressive and flexural tests for concrete which was used in this research, load deflection relationships, the moment at mid-span with deflection and ductility were established. The results prove that, polymer modified concrete wich content waste plastic fiber has compressive and flexural strengths more than reference mixes as well as the PMC beams wich content waste plastic fiber have a stiffer response in terms of structural behaviour, more ductility and lower cracking deflection than those made by reference concretes and that refer to good role of styrene Butadiene Rubber (SBR) polymer and plastic fiber on the properties and behaviour of reinforced concrete beams.
The aim of this study is to develop Lightweight self-compacting concrete (LWSCC) mixtures using locally sourced waste materials such as Expanded Polystyrene Beads (EPS) and Waste Plastic Fibers (WPFs) which are all available abundantly available in Republic of Iraq at little or no cost. The fresh, hardened and mechanical properties of these LWSCC were studied, followed by results analysis. Five different mixes of LWSCC were prepared in term of WPF content (0.25, 0.5, 0.75, 1.0, and 1.25 %), in addition to the control mix (R mix) and lightweight concrete (E mix) made of EPS content as a replacement of coarse aggregate. The study showed that the LWSCC produced with these waste materials were decreased the density (lightweight) of the concrete mixes as EPS tend to form more clumps, absorb water and make the mix dry. Therefore, concrete mixtures were adjusted accordingly to be able to offset the workability caused by the addition of EPS. The increase in WPF content decreased the workability due to clumping that occurred in the mixing phase. The analysis of mechanical properties of the LWSCFRC specimens revealed that there was not much improvement. While LWSCC with 100% of EPS replacement as coarse aggregates and 1.25% WPFs provides the best flexural toughness performance
This study presents an experimental research of Self-Compacting Concrete (SCC) properties containing waste plastic fibers (WPF). Adding waste plastics which resulting from cutting PET bottles as fibers to SCC with aspect ratio (l/d) equal to (28). To illustrate the effects of WPFs on the SCC, the current study was divided into two parts, the first part shows the effect of adding plastic fibers on the properties of fresh SCC, which include the ability flow, spread, passing and resistance to segregation, and the second part to evaluate the properties of hardened (mechanical) destructive and non-destructive, which include compression strength, flexural strength and ultrasonic pulse velocity test. One reference concrete mix was conducted and eight mixes contain WPF has been producing self-compacting concrete mixers containing a different volumetric ratio of plastic fibers (Vf) % percentages (0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2) %. Three cubes samples were prepared for testing the compressive strength, three prisms were prepared for the test modules of rupture, one cylinder were prepared testing the modulus of elasticity. The experiments show that adding plastic fibers to SCC leads to an increase in the compression strength and modulus of rupture at 28-day as follows (42.30)% and (73.12)% respectively for mix ratio (1.5)% in comparison with the reference mix, which represent the best ratio of fibers, as such the results of testing the fresh concrete containing waste fibers showed that adding these fibers led a reduction in workability for SCC.