Iraqi Journal of Civil Engineering
Login
Iraqi Journal of Civil Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
    • Reviewers of IJCE
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Journal Funding Sources
    • AI Usage and Disclosure Policy
    • Announcements
    • Contact

Search Results for Ubaid Ullah

Article
A Study of Viscous Dampers for Enhanced Seismic Performance in Reinforced Concrete Multi-Storey Building

Fawad Ullah, Muhammad Ameer Hamza, Jamal Butt, Muhammad Usama, Ubaid Ullah

Pages: 68-86

PDF Full Text
Abstract

This study investigates the seismic performance of a nine-storey reinforced concrete building located in Seismic Zone 3, focusing on the effectiveness of viscous dampers in enhancing structural resilience. With increasing seismic risks, the integration of damping systems has become critical for mitigating vibrations and improving building safety. The research evaluates four configurations: a fixed-base building with no dampers, buildings with corner dampers featuring uniform and varying force capacities, and a building with middle dampers. The Equivalent Static Load (ESL) and Response Spectrum study (RSA) methods are used in the ETABS 2021 research to look at important factors such the natural period, storey stiffness, storey drift, storey displacement, and overturning moments.   These steps are based on the UBC 97 criteria.    The results show that viscous dampers do assist structures stay standing during earthquakes.    Buildings with corner dampers that could handle different amounts of stress had a natural period that was 37.5% shorter. This means that they were stiffer and could respond to seismic shocks faster. The storey's stiffness went down by 16.7%, and the periods of overturning went down by 5.7%.   This shows that the dampers did a great job of getting rid of energy.    Also, the maximum storey displacement and drift were 41.6% and 48.14% lower than in the fixed-base model, respectively.    These figures show how important it is to put dampers in the right places, especially at corners where the force capacity changes, to make buildings more resistant to earthquakes. The study's conclusion is that viscous dampers make multi-story structures in moderate seismic zones much safer by making them less likely to break and improving how effectively they perform. This study gives engineers and designers important information that makes them desire to use current dampening technologies in tall buildings to make them safer during earthquakes.

Article
Evaluation of Traffic Congestion Solutions in Peshawar Chowk Using AIMSUN Software

Ubaid Ullah, Muhammad Usama*, Muhammad Abbas, Zaid Muhammad, Muhammad Ameer Hamza

Pages: 1-16

PDF Full Text
Abstract

The negative impacts of road traffic congestion in the Smart City environment are the subject of this study. Although the postponements are not entirely new, they are a well-known issue that affects a large portion of the worldwide population through pollution and postponements. In order to maintain flow and prevent traffic bottlenecks, there is a higher need for traffic management due to the growing urbanization and number of motorized motor vehicles. We use Peshawar Chowk, being one of Pakistan's most important urban and economic centers, it was chosen as a pilot research location. It is experiencing an uncontrolled phase of fast urbanization and motorization. The study first examines sustainable transportation systems to comprehend the idea of environmentally friendly transportation. The research then assesses to determine the most sustainable kind of transportation, considering Pakistan's current urban transportation and transportation infrastructure. Using AIMSUN software, the best option for a more environmentally friendly transportation system may be found. We do this by comparing the criteria and alternatives in pairs. A survey questionnaire is used to conduct this pair-wise comparison.

Article
Performance of low-cost Concrete using Bentonite clay as a partial replacement with Cement

Muhammad Usama, Ubaid Ullah, Zaid Muhammad, Muhammad Abbas

Pages: 39-51

PDF Full Text
Abstract

Concrete is produced from millions of tons of Cement, which emits a significant amount of carbon dioxide from cement mills and contributes to global warming. Therefore, it is important to seek out less expensive and more environmentally friendly substitutes for OPC. While various substitutes are available, such as recycled glass, marble, silica fume fly ash, or agricultural waste like rice husks or wheat straw, the performance of concrete is significantly affected when bentonite is used as a replacement for Cement. This study aims to evaluate Jhelum bentonite, which is located at 32°56′ north and 73°44′ east longitude, as a replacement for Cement in different ratios (0:100, 10:90, 20:80, 30:70, and 40:60) to improve the durability of the system as more bentonite is used to replace conventional Portland cement, the workability, density, and water absorption of the new concrete all decrease. Compressive Strength, Tensile Strength, and flexural Strength of blocks and cylinders were tested after being cured for 7 and 28 days. Analysis of these strength tests revealed that the mixes containing bentonite were weaker after 7 days compared to 28 days, and the Strength of blocks was reasonable compared to cylinders.Keywords: Bentonite, Concrete, Compressive Strength, Tensile Strength.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal of Civil Engineering

University of Anbar

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY NC 4.0 Logo Licensed under CC-BY-NC 4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 College of Engineering, University of Anbar. All rights reserved, including those for text and data mining, AI training, and similar technologies.