A study of Al-Rayhanna Bridge (Iraq, Anbar Province) concerned with examining elastomeric bearing pad dynamic behaviour against changes in traffic speed and girder deflection. The areas of maximum deflection were being located at midspans of the girders, especially under truck or underneath truck lanes. One of the key contributions of the work was the application of the deflection measurements of the Linear Variable Differential Transformer (LVDT) for the estimation of car speeds, and a very welcoming mean value of 40.95 km/h (the visual timing correlations being >95 per cent), showed that structural measurement can be employed in reliable traffic analysis. The new bridge was defined by reduced damping ratio (3-4 % compared to 5-6 % of the old bridge) accounting for varying abilities to absorb and release energy. Thus, the new bridge appeared to require less balance restoration energy (1.5-2 seconds / 0.5-0.67 Hz) than the old bridge exhibiting faster stabilization (1-1.5 seconds / 0.67-1 Hz). The rate of amplitude decay also varied quite radically: 20-25 per cent per cycle for the new bridge compared to 30-35 per cent for the old bridge. Structural design and climatic dependent factors , indicates the significant role played by adopting dynamic factors - such as damping, energy dissipation and deflection patterns in bridge structure design and maintenance to guarantee long-lasting structural integrity and safety. These observations give conclusive feedback on upcoming resilient bridge construction, also the field of material science and traffic engineering
Because of rising the need for health clinics in recent years, as well as the current economic climate, the researcher used value engineering to reduce costs while retaining the necessity of these initiatives. The aim of this study is to increase the value of health clinics through applying value engineering approach to the main building (two and a half floors). Collected data, function analysis, brainstorming and alternatives, evaluating and selection, and generating the value report are the steps followed. According to the study, using the value engineering process resulted in a cost savings of 32.15 percent, or (258.305.000) million Iraqi dinars without jeopardizing the desired outcome.
Polyethylene terephthalate (PET) fiber is a green-friendly fiber that is capable of enhancing the mechanical properties of wet-mixing shotcrete. The main purpose of this study is to see how varied volumes of waste plastic fibers (WPF) affect the flowability and mechanical properties of wet-mix shotcrete. For this aim, a variety of experimental tests based on WPF content were chosen. Fresh and mechanical tests included slump, T500, density, compressive strength, and splitting strength were applied. The results shown a improved in shotcrete performance as the WPF content increased. Among all fitting correlations, density and compressive strength revealed the strongest linear ship association. Due to greater interlocking between WPF and concrete matrix, WPF was a major use in enhancing splitting tensile strength. WPF had the most influence on splitting strength, with 23–31 percent, 7–23 percent, and 6–38 percent for 7, 14, and 28-day, respectively.
Pavement rutting as a permanent deformation is a major type of distress in flexible pavements. In Iraq, the rutting in Expressway pavements represents a severe problem due to its widespread, and high severity and distress density levels. Therefore, driving is profoundly dangerous and causes severe damage to the vehicle’s parts and the life of its riders. To date, the number of comprehensive research on pavement rutting has been limited in Iraq, owing to several technical, logistic, and economic considerations. The current research studies the major mechanisms responsible for rutting and evaluates the structure of the Iraqi Expressway No.1 at selected sections. The work encompasses field and laboratory aspects. The field work involved; performing field surveys to investigate the pavement rutting condition and its extension with depth, characterizing pavement layers in terms of geometric material properties, and collecting field samples for lab tests. The laboratory work was detailed and included; performing a set of standard lab tests on samples taken from the asphalt, the subbase, and the subgrade layers as well as the natural ground. In addition, the project’s archive was searched for specific design information and limitations. In order to assess pavement rutting in the selected sections of Expressway No.1/R9 (A and B), two well-established evaluators were considered; The rutting severity levels and the distress density.
This study investigates the seismic performance of a nine-storey reinforced concrete building located in Seismic Zone 3, focusing on the effectiveness of viscous dampers in enhancing structural resilience. With increasing seismic risks, the integration of damping systems has become critical for mitigating vibrations and improving building safety. The research evaluates four configurations: a fixed-base building with no dampers, buildings with corner dampers featuring uniform and varying force capacities, and a building with middle dampers. The Equivalent Static Load (ESL) and Response Spectrum study (RSA) methods are used in the ETABS 2021 research to look at important factors such the natural period, storey stiffness, storey drift, storey displacement, and overturning moments. These steps are based on the UBC 97 criteria. The results show that viscous dampers do assist structures stay standing during earthquakes. Buildings with corner dampers that could handle different amounts of stress had a natural period that was 37.5% shorter. This means that they were stiffer and could respond to seismic shocks faster. The storey's stiffness went down by 16.7%, and the periods of overturning went down by 5.7%. This shows that the dampers did a great job of getting rid of energy. Also, the maximum storey displacement and drift were 41.6% and 48.14% lower than in the fixed-base model, respectively. These figures show how important it is to put dampers in the right places, especially at corners where the force capacity changes, to make buildings more resistant to earthquakes. The study's conclusion is that viscous dampers make multi-story structures in moderate seismic zones much safer by making them less likely to break and improving how effectively they perform. This study gives engineers and designers important information that makes them desire to use current dampening technologies in tall buildings to make them safer during earthquakes.
Wind and water levels influence wave overtopping and consequent coastal flood threat, which is especially important in hyper-tidal bays where even modest variations in wave heights may be devastating if they coincide with high tides. The influence of wind and wave characteristics on wave propagation, as well as the sensitivity of significant wave height, are numerically investigated along the Gaza Strip's beachfront as an example. Wind waves with a high amplitude and short duration are susceptible to opposing winds, and their steepening effect varies throughout the bay shoreline, underlining the impact of shoreline geometry and bathymetry on wave hazard. The findings contribute to our existing knowledge of the complex interplay between wind and waves, as well as the crucial variables that maximize danger and hazard variability along the coastline. The findings of this study can assist port and harbor managers prevent financial losses due to downtime, influence sustainable coastal sea defense design, and better understand how wave danger may change in the future owing to shifting storm tracks. The findings can also be used to improve coastal infrastructure design and disaster response planning. Two scenarios were investigated with a wind direction of 330 and 30. It seems that when the wind direction is 330, it produces a higher Hs of 1.2 m and relatively larger wave return period with a range of 12-22 s and a higher wave energy dissipation of 220 N/Ms. In contrast, when the wind direction is 30, it produces a smaller HS of 1m with a short wave return period of 15-17s and smaller wave energy dissipation of 120 N/Ms. Overall, a wind direction of 30 has fewer occurring chances over the year but it seems to produce a destructive wave that are spread over the whole coast with a rapid return period.
Value Engineering is one technique to distributed the resources fairly and perfect progress with honest meaning to decrease the expenditure , perform functions to improve the value element in project through decreasing the cost and developing the quality as well as choosing the better alternative to get the best quality . The research studies the value engineering technique by a field surveying and questionair submitted to different project personal in ALanbar government trough many stages beginning primary and finial design to construction project stage and the last operating and maintenance stage. Many site visits and personal interviews were carried out with their actual onsite experience on some of construction projects. Many useful conclusions and recommendations, one of them the researcher recommended to use the value engineering in contracts which have been support the economic national and save money to finance other projects.
In this study, the structural behaviour of RC-deep beams of glass fibre-reinforced polymer (GFRP) rubberized concrete is investigated. Rubberized concrete is manufactured by replacing fine sand aggregate with rubber crumbs in volumetric replacement ratios. The main variables were the crumb rubber content (0%, 10%, and 20%) and the main reinforcement ratio. Tested Six samples of deep beams with different dimensions (b = 150, h = 300 mm, L= 1400 mm) were under a four-point load until failure. The parameters under investigation were the mechanical properties of mixtures, load-midspan deflection curves, toughness, and the load-strain relationship. The results indicate that the increased crumb rubber content led to a decrease in the mechanical properties of rubberized concrete mixtures. It was found that the behaviour of all samples of rubberized concrete affected the deflection load curve, the ultimate load, and the increase in deflection. The sample R2-10% Rub showed the highest toughness among the tested samples, with an increase of 301.6% compared to the reference.
Concrete is produced from millions of tons of Cement, which emits a significant amount of carbon dioxide from cement mills and contributes to global warming. Therefore, it is important to seek out less expensive and more environmentally friendly substitutes for OPC. While various substitutes are available, such as recycled glass, marble, silica fume fly ash, or agricultural waste like rice husks or wheat straw, the performance of concrete is significantly affected when bentonite is used as a replacement for Cement. This study aims to evaluate Jhelum bentonite, which is located at 32°56′ north and 73°44′ east longitude, as a replacement for Cement in different ratios (0:100, 10:90, 20:80, 30:70, and 40:60) to improve the durability of the system as more bentonite is used to replace conventional Portland cement, the workability, density, and water absorption of the new concrete all decrease. Compressive Strength, Tensile Strength, and flexural Strength of blocks and cylinders were tested after being cured for 7 and 28 days. Analysis of these strength tests revealed that the mixes containing bentonite were weaker after 7 days compared to 28 days, and the Strength of blocks was reasonable compared to cylinders.Keywords: Bentonite, Concrete, Compressive Strength, Tensile Strength.
Sustainable buildings reflect the interest rising of Urbanism sectors in issues of economic development, optimal utilization of natural resources and greater reliance on "renewable" sources of energy. The objective of the research is to identify and Diagnosis the priority of alternatives to sustainable projects with the of relative importance and to review the value engineering indicators in building and the possibility of applying sustainable building standards such as British Standards (BREEAM), US Standards (LEED), Pearl Rating System and Green Pyramid Assessment System. The research is based on four axes. The first axis is the foundations of architectural design to serve the optimum use of the available resources. The second axis is based on the methods of producing building materials with optimum use of natural resources; Third axis: The sustainable use of the building to achieve conservation of the environment using economical sources of energy, waste recycling and maintenance of the building according to the required specifications. The fourth axis, which means Using renewable energies to provide the building with the energy it needs. The literature and researches in the field of research work were reviewed, which included the concept of applying value engineering method in the sustainable buildings and the most important areas of their applications during the stages of completion of the project and what are the basic considerations that should be provided in the construction projects, Which represents the practical aspect in relation to the various stages of the field study, which includes aspects related to the field survey, through the preparation and Configure of questionnaires derived from the theoretical study and interviews and also focused on the indicators and areas of applications during the stages of the project (pre-construction stage, implementation stage, A maintenance and operation, post-construction phase (end of the age of the building) and what are the basic considerations that must be provided in the construction projects. The research provided this results: The Sustainable Buildings Projects location Selection Index is The most important indicators of value engineering for sustainable buildings where relative importance of it is 72%, according to the respondents' answers, conversely the architectural index, with its relative importance of 55%, while the electromechanical index was 68% and the constructional index by 65%. And the development of a waste management program during the process of construction and operation so that this program achieves the minimum recycling and the use of new alternatives to building materials drawing on what has been developed within other areas in the development of the construction industry.
The negative impacts of road traffic congestion in the Smart City environment are the subject of this study. Although the postponements are not entirely new, they are a well-known issue that affects a large portion of the worldwide population through pollution and postponements. In order to maintain flow and prevent traffic bottlenecks, there is a higher need for traffic management due to the growing urbanization and number of motorized motor vehicles. We use Peshawar Chowk, being one of Pakistan's most important urban and economic centers, it was chosen as a pilot research location. It is experiencing an uncontrolled phase of fast urbanization and motorization. The study first examines sustainable transportation systems to comprehend the idea of environmentally friendly transportation. The research then assesses to determine the most sustainable kind of transportation, considering Pakistan's current urban transportation and transportation infrastructure. Using AIMSUN software, the best option for a more environmentally friendly transportation system may be found. We do this by comparing the criteria and alternatives in pairs. A survey questionnaire is used to conduct this pair-wise comparison.
This main aim of this study is evaluate wide range of fresh and hardened properties of sustainable self-compacting concrete containing various types of Cement Replacement Materials with optimum contents of Polyethylene Terephthalate PET waste plastic as fibers and fine aggregate replacement. This is to evaluate effect of the two forms of PET and to determine the best CRMs could be used with sustainable SCC. such as limestone, glass powder and fly ash with high replacement rate of 70% by weight of cement were used while fourth one (kaolin) was used with replacement rate of 20%. PET fibers were added to SCC with an aspect ratio of 24.4 and 0.7% volume fraction whereas fine aggregate partially replaced by 4% of waste plastic. Four reference mixtures contained FA, LP, GP and KA only, same four mixtures contained 0.7% PET fibers by volume, and the other same four mixtures contained 4% PET fine aggregate by volume. The obtained results all tested fresh properties, which include slump flow, T500, L-Box and segregation resistance were within the limits of the specification reported in EFNERC guidelines. Further, the forms PET have an adverse effect fresh properties of SCC. As for hardened properties (compressive strength, splitting tensile strength, flexural strength and impact strength). Further, this produced type of SCC showed an range of compressive strength (15.2-31.64 MPa) at 28 days. It can be from the current study the best CRMs to be used in SCC containing PET wastes was FA in terms of most tested properties.
The present study, the effect of changes that developed in concrete structures with time is presented. Two way slab investigated experimentally by [1]was analyzed using finite element method by ANSYS commercial program. Many parameters studied such as length to thickness ratio, reinforcement ratio and ultimate load ratio. The slab with dimension (2360*2360*63) mm and reinforced with different types of materials such as steel bars ,GFRP and CFRP (fiber reinforced polymer) bars . The results show that the strain increase gradually with time after apply the load. It can see that the strain in steel model increase with ratio of 19.98% when the load increase from 75% to 90%,and decrease with ratio 50% when the load decrease from 75% to 50% .That is, the change by increasing the strain is less and slower than the change by decreasing the strain, since the strain when dropping the load is less than the strain when lifting the load, because the structure has not undergone and its stiffness is still high and it is trying to recover its original shape. It increases significantly at the beginning, and then the difference decreases or stabilizes approximately after 330 days.
The accumulation of wastes, especially plastic and car tires, has become a major problem facing society today. Therefore, through this research, these wastes were recycled and used to improve some properties of concrete. Recycled crumb rubber from car tires was used instead of sand as a partial replacement of 10%. The substitution was done by two methods: random and equivalent size substitution. As well, 1%polyethylene terephthalate (PET) fiber was added by the volume of concrete to improve some properties of rubberized concrete. Compressive strength, ultrasonic pulse velocity test (UPV) were conducted in this study to investigate the efficiency of PET rubberized concrete, as well the impact resistance test was also conducted to investigated the ability of PET rubberized concrete in term of energy absorption. Slabs of size (50cm×50cm×5cm) were utilized for low velocity impact test. The results indicated there were a reduction in compressive strength and UPV results were observed in PET fiber rubberized concrete the reduction were (37.47% and 5.4%) respectively as compared with PETC mixture and the result of dynamic modulus of elasticity show the same pattern of UPV result , in contrast there was an improvement in the impact resistance when PET fiber and crumb rubber were used it increased by(117.63% and 52.9% ) for random and equivalent replacement respectively as compared with PETC.
The design of reinforced concrete structures has traditionally relied on empirical techniques based on experience or experimental research on actual structural members. Although this approach produces a high level of precision, it is usually exceedingly costly and time-consuming. This paper studied the convergence between theoretical analysis (ACI 318-19 Equations) and numerical analysis (FEM) of eleven one way reinforced concrete slab specimens casted by shotcrete contains three types of plastic fibers including waste plastic (PET), polypropylene (PP), and hybrid (PET+PP) fibers with three addition ratios (0.35%, 0.7%, and 1%) for each type. The results concluded that the numerical analysis (ANSYS FE model) showed a good agreement with the theoretical (ACI 318-19) of one-way slab in terms of ultimate load, with a variance, and standard deviation equal to 0.00076, and 0.027 respectively. Hence, ANSYS v15 software can be used for the analysis of reinforced concrete slabs casted by shotcrete contain waste plastic fibers and polypropylene fibers.
In recent years, a number of researchers have adopted the wet packing (WP) approach to design different types of concrete mixes. Particle grading is a key to the optimization of the wet compactness density; for that reason, all empty spaces that exist in between large-size particles need to be completely filled with particles of smaller size. Previously-conducted studies in this field have been focused on measuring the particle size distribution’s packing density (PD) of the of granular matrices is the purpose of investigating how to increase the PD of cementitious materials. Thus, literature lacks models capable of predicting the optimal PD value. The current study collected and analyzed 216 datasets in order to construct a model for accurate prediction of PD. The main datasets were organized into two categories: modeling datasets and validation datasets. To configure the model in the best way, a hybrid gravitational search algorithm-artificial neural network (GSA-ANN) was also developed in this study. The findings confirmed ANN as an effective alternative for measuring the ultimate PD of cementitious pastes. ANN provided high levels of accuracy, practicality, and effectiveness in the process of predicting the PD value. Based on the final results, the implementation of the hybrid GSA-ANN technique causes a significant decrease in the number of tests conducted on experimental samples, which results in not only saving time and money, but also reducing the CO2 emission volume.
Crack monitoring of pavements is an ever-evolving technology with new crack identification technologies being introduced frequently. Although older technologies consisted of physical removing the pavement section using coring, however new methods are available that are non-destructive and yield a higher performance than conventional technologies. This paper compiles various crack monitoring technologies such as wireless sensor networks, photo imaging, laser imaging, 3D road surface profile scans, acoustics wave propagation technology, embedded strain sensors and onboard vehicle sensors that majorly use an artificial intelligence algorithm to identify and categorize the cracks. The research also includes the use of convolutional neural network that can be used to analyze pavement images and such neural network can localize and classify the cracks for crack initiation and propagation stage. The research concludes with the favor of using the optical imaging technology called Syncrack which serves better performance in terms of time of prediction by 25% and accuracy by 30% when compared to other sensing technologies.
Determining building materials and their types and determining their effect on concrete properties are consistent with the technical and design variables of buildings. From this point of view, the research came to include theoretical studies and empirical tests for some materials, focusing on the aggregate as a basic material involved in the formation of concrete. The first part includes the introduction, research problem, assumptions, importance, and purpose of the research. the second part was to conduct practical experiments by designing different concrete mixtures in the mixing ratios and the type of aggregate until results were reached regarding the resistance of the concrete that was produced as a result of the difference in densities between ordinary aggregate concrete and lightweight aggregate concrete. Through that, for example, the lightweight aggregate with an age of (7) days and a mixing ratio of (1: 2: 4) gave strength to the models used (19.58) Mpa, and for the same mixing ratio and at an age of (28) days, it gave durability ( 22.83) Mpa. When the mixing ratio was changed to (1: 1.5: 3), it was (25.74) MPa and (32.34) MPa at the age of (7) days and (28) days, respectively. These results give an accurate indication that the aggregate is light in weight with similarity to the ordinary aggregate in obtaining concrete with a bearing strength within the approved specifications without guaranteeing the environmental treatments and the resulting loads
This research includes producing compacted concrete by rolling method and the possibility for using in highway construction field with studying the influence of adding waste plastic fiber resulting from manual cutting for bottles used in the conservation gassy beverage on different characteristics of this type of concrete. For the purpose of selecting mix proportions appropriate for rolling compacted concrete (RCC). Approved design method for ACI-committee (5R-207 .1980) was selected for this research. Destroying plastic waste by volumetric rates ranging between (0.5%) to (2%) was approved. Reference mix was produced for comparison. Tests were conducted on the models produced from rolling compacted concrete like compressive strength, flexural strength and split tensile strength. The analysis of the results showed that the use of plastic waste fibers (1%) has led to improve the properties of each of the compressive strength and flexural strength and split tensile strength compared with reference concrete. Compressive strength in 28 days with fiber ratio (1%) is higher than (52.15%) from compressive strength in 28 days of reference concrete. It can be also observed that each of the flexural strength and split tensile strength increases by (17.86, 25.61)%, respectively, from flexural strength and split tensile strength for the reference mix
In the civil engineering, the prediction of cracks for tunnel lining is too hard because it depends by different factors for example concrete strength, tunnel operation conditions, stress and geological surroundings. The aim of this study is to design a Fuzzy inspect System (FIS) for evaluating the concrete cracks of tunnel lining. Fuzzy logic is a method to signify a type of uncertainty which is understandable for user. The system has been designed to meet permit crack formula that issued in “Highway Tunnel Design Specifications”. When the maximal permit crack width as example is chosen as 0.7mm, 1.2mm and 3.3mm separately the fuzziness set accordingly is Minor , moderate and severe. The average error for the predicted crack (element sample) in FIS is 8.34%. The fuzzy evaluation model is based on the information of a real in-service PESHRAW highway tunnel, which reflects field status. Therefore, this evaluation is comfortable.
The buckling analysis of Euler-Bernoulli beam resting on two-parameter elastic foundation (EBBo2PEF) has important applications in the analysis and design of foundation structures, buried gas pipeline systems and other soil-structure interaction systems under compressive loads. This study investigates the buckling analysis of EBBo2PEFs. The governing differential equation of elastic stability (GDiES) is derived in this work using first principles equilibrium method. In general, the GDiES is an inhomogeneous equation with variable parameters for non-prismatic beams under distributed transverse loadings. However, when transverse loads are absent and the beam is prismatic the GDiES becomes a fourth order ordinary differential constant parameter homogeneous equation. General solution to GDiES is obtained in this work using the classical trial exponential function method of solving equations. Two cases of end supports were considered: simply supported ends and clamped ends. Boundary conditions (BCs) were used to obtain the characteristic buckling equations whose eigenvalues were used to determine the critical buckling loads for two cases of BCs considered. It was found that the method gave exact solutions for each of the BCs. The critical elastic buckling load coefficients for dimensionless beam-foundation parameter and ranging from for simply supported EBBo2PEFs were identical with previous results that used Stodola-Vianello iteration methods and finite element method. Similarly, the critical buckling load coefficients for and are identical with previous results that used Ritz variational method.
In this paper, a practical method of analysis of the pile displacements is proposed on the basis of the theory of load-transfer curves widely used in pile design and analysis. The parameters of the load-transfer curves for piles under axial load (called t-z, q-z curves) or lateral load (called P-Y curves) were correlated with the number of blows Nspt measured during the standard penetration test (SPT). Well documented case histories of full-scale axial or lateral loading tests on single piles in sand were collected, and the analysis of the experimental results led to define the parameters of the load-transfer curves. Two practical methods of computation of a single pile under an axial load or a lateral load were proposed to be used within the scope of a pile foundation project. At last, a validation process of the load-transfer curves was undertaken by direct comparison of the predicted pile displacements to those measured during other pile loading tests, which showed a good predictive capability of the two proposed methods
Traffic movement is considered a compound phenomenon that is impacted by behavioural, economic, and physical aspects. It is performed within the context of an urban system that consists of road networks and crossings, where the movement crouches to depend. The measuring of identifying their size and densities and current problems helps to Improve and development for roads and streets network existing and important is intersections for purposes the accessibility, potentiality of future intersections, and network development towards constructing a composition to raise the quality and the efficient performance of roads and streets. The study was dependent on a traffic survey for intersections, areas of urban intersections, and the road network of Al-Ramadi city, as well as the number of vehicles that generated a large volume of traffic flow. The use of the program (HCS 2010) to detect appropriate for purposes decreasing traffic congestion and delayed trip time in the areas based on existing and future districts that generate different types and purposes of journeys to lessen the delay trip time to lessen traffic congestion. Therefore, research looks at both sides: first, a study of the existing intersections of the main road network and urban streets, including an examination of the components and shapes of these intersections in the study area; second, an examination of the importance placed on these intersections by the planning and design process.